Metamath Proof Explorer


Theorem eulerpartlemb

Description: Lemma for eulerpart . The set of all partitions of N is finite. (Contributed by Mario Carneiro, 26-Jan-2015)

Ref Expression
Hypotheses eulerpart.p P=f0|f-1Finkfkk=N
eulerpart.o O=gP|ng-1¬2n
eulerpart.d D=gP|ngn1
eulerpart.j J=z|¬2z
eulerpart.f F=xJ,y02yx
eulerpart.h H=r𝒫0FinJ|rsuppFin
eulerpart.m M=rHxy|xJyrx
Assertion eulerpartlemb PFin

Proof

Step Hyp Ref Expression
1 eulerpart.p P=f0|f-1Finkfkk=N
2 eulerpart.o O=gP|ng-1¬2n
3 eulerpart.d D=gP|ngn1
4 eulerpart.j J=z|¬2z
5 eulerpart.f F=xJ,y02yx
6 eulerpart.h H=r𝒫0FinJ|rsuppFin
7 eulerpart.m M=rHxy|xJyrx
8 fzfid 1NFin
9 fzfi 0NFin
10 snfi 0Fin
11 9 10 ifcli ifx1N0N0Fin
12 11 a1i xifx1N0N0Fin
13 eldifn x1N¬x1N
14 13 adantl x1N¬x1N
15 iffalse ¬x1Nifx1N0N0=0
16 eqimss ifx1N0N0=0ifx1N0N00
17 14 15 16 3syl x1Nifx1N0N00
18 8 12 17 ixpfi2 xifx1N0N0Fin
19 18 mptru xifx1N0N0Fin
20 1 eulerpartleme gPg:0g-1Finkgkk=N
21 ffn g:0gFn
22 21 3ad2ant1 g:0g-1Finkgkk=NgFn
23 ffvelcdm g:0xgx0
24 23 3ad2antl1 g:0g-1Finkgkk=Nxgx0
25 24 nn0red g:0g-1Finkgkk=Nxgx
26 nnre xx
27 26 adantl g:0g-1Finkgkk=Nxx
28 25 27 remulcld g:0g-1Finkgkk=Nxgxx
29 cnvimass g-1domg
30 fdm g:0domg=
31 30 adantr g:0g-1Findomg=
32 29 31 sseqtrid g:0g-1Fing-1
33 32 sselda g:0g-1Finkg-1k
34 ffvelcdm g:0kgk0
35 34 adantlr g:0g-1Finkgk0
36 33 35 syldan g:0g-1Finkg-1gk0
37 33 nnnn0d g:0g-1Finkg-1k0
38 36 37 nn0mulcld g:0g-1Finkg-1gkk0
39 38 nn0cnd g:0g-1Finkg-1gkk
40 simpl g:0g-1Fing:0
41 nnex V
42 fcdmnn0supp Vg:0gsupp0=g-1
43 41 42 mpan g:0gsupp0=g-1
44 43 adantr g:0g-1Fingsupp0=g-1
45 eqimss gsupp0=g-1gsupp0g-1
46 44 45 syl g:0g-1Fingsupp0g-1
47 41 a1i g:0g-1FinV
48 0nn0 00
49 48 a1i g:0g-1Fin00
50 40 46 47 49 suppssr g:0g-1Finkg-1gk=0
51 50 oveq1d g:0g-1Finkg-1gkk=0k
52 eldifi kg-1k
53 52 adantl g:0g-1Finkg-1k
54 nncn kk
55 mul02 k0k=0
56 53 54 55 3syl g:0g-1Finkg-10k=0
57 51 56 eqtrd g:0g-1Finkg-1gkk=0
58 nnuz =1
59 58 eqimssi 1
60 59 a1i g:0g-1Fin1
61 32 39 57 60 sumss g:0g-1Finkg-1gkk=kgkk
62 simpr g:0g-1Fing-1Fin
63 62 38 fsumnn0cl g:0g-1Finkg-1gkk0
64 61 63 eqeltrrd g:0g-1Finkgkk0
65 eleq1 kgkk=Nkgkk0N0
66 64 65 syl5ibcom g:0g-1Finkgkk=NN0
67 66 3impia g:0g-1Finkgkk=NN0
68 67 adantr g:0g-1Finkgkk=NxN0
69 68 nn0red g:0g-1Finkgkk=NxN
70 24 nn0ge0d g:0g-1Finkgkk=Nx0gx
71 nnge1 x1x
72 71 adantl g:0g-1Finkgkk=Nx1x
73 25 27 70 72 lemulge11d g:0g-1Finkgkk=Nxgxgxx
74 62 adantr g:0g-1Finxxg-1g-1Fin
75 38 nn0red g:0g-1Finkg-1gkk
76 75 adantlr g:0g-1Finxxg-1kg-1gkk
77 38 nn0ge0d g:0g-1Finkg-10gkk
78 77 adantlr g:0g-1Finxxg-1kg-10gkk
79 fveq2 k=xgk=gx
80 id k=xk=x
81 79 80 oveq12d k=xgkk=gxx
82 simprr g:0g-1Finxxg-1xg-1
83 74 76 78 81 82 fsumge1 g:0g-1Finxxg-1gxxkg-1gkk
84 83 expr g:0g-1Finxxg-1gxxkg-1gkk
85 eldif xg-1x¬xg-1
86 57 ralrimiva g:0g-1Finkg-1gkk=0
87 81 eqeq1d k=xgkk=0gxx=0
88 87 rspccva kg-1gkk=0xg-1gxx=0
89 86 88 sylan g:0g-1Finxg-1gxx=0
90 85 89 sylan2br g:0g-1Finx¬xg-1gxx=0
91 62 adantr g:0g-1Finxg-1Fin
92 38 adantlr g:0g-1Finxkg-1gkk0
93 92 nn0red g:0g-1Finxkg-1gkk
94 92 nn0ge0d g:0g-1Finxkg-10gkk
95 91 93 94 fsumge0 g:0g-1Finx0kg-1gkk
96 95 adantrr g:0g-1Finx¬xg-10kg-1gkk
97 90 96 eqbrtrd g:0g-1Finx¬xg-1gxxkg-1gkk
98 97 expr g:0g-1Finx¬xg-1gxxkg-1gkk
99 84 98 pm2.61d g:0g-1Finxgxxkg-1gkk
100 61 adantr g:0g-1Finxkg-1gkk=kgkk
101 99 100 breqtrd g:0g-1Finxgxxkgkk
102 101 3adantl3 g:0g-1Finkgkk=Nxgxxkgkk
103 simpl3 g:0g-1Finkgkk=Nxkgkk=N
104 102 103 breqtrd g:0g-1Finkgkk=NxgxxN
105 25 28 69 73 104 letrd g:0g-1Finkgkk=NxgxN
106 nn0uz 0=0
107 24 106 eleqtrdi g:0g-1Finkgkk=Nxgx0
108 68 nn0zd g:0g-1Finkgkk=NxN
109 elfz5 gx0Ngx0NgxN
110 107 108 109 syl2anc g:0g-1Finkgkk=Nxgx0NgxN
111 105 110 mpbird g:0g-1Finkgkk=Nxgx0N
112 111 adantr g:0g-1Finkgkk=Nxx1Ngx0N
113 iftrue x1Nifx1N0N0=0N
114 113 adantl g:0g-1Finkgkk=Nxx1Nifx1N0N0=0N
115 112 114 eleqtrrd g:0g-1Finkgkk=Nxx1Ngxifx1N0N0
116 nnge1 gx1gx
117 nnnn0 xx0
118 117 adantl g:0g-1Finkgkk=Nxx0
119 118 nn0ge0d g:0g-1Finkgkk=Nx0x
120 lemulge12 xgx0x1gxxgxx
121 120 expr xgx0x1gxxgxx
122 27 25 119 121 syl21anc g:0g-1Finkgkk=Nx1gxxgxx
123 letr xgxxNxgxxgxxNxN
124 27 28 69 123 syl3anc g:0g-1Finkgkk=NxxgxxgxxNxN
125 104 124 mpan2d g:0g-1Finkgkk=NxxgxxxN
126 122 125 syld g:0g-1Finkgkk=Nx1gxxN
127 116 126 syl5 g:0g-1Finkgkk=NxgxxN
128 simpr g:0g-1Finkgkk=Nxx
129 128 58 eleqtrdi g:0g-1Finkgkk=Nxx1
130 elfz5 x1Nx1NxN
131 129 108 130 syl2anc g:0g-1Finkgkk=Nxx1NxN
132 127 131 sylibrd g:0g-1Finkgkk=Nxgxx1N
133 132 con3d g:0g-1Finkgkk=Nx¬x1N¬gx
134 elnn0 gx0gxgx=0
135 24 134 sylib g:0g-1Finkgkk=Nxgxgx=0
136 135 ord g:0g-1Finkgkk=Nx¬gxgx=0
137 133 136 syld g:0g-1Finkgkk=Nx¬x1Ngx=0
138 137 imp g:0g-1Finkgkk=Nx¬x1Ngx=0
139 fvex gxV
140 139 elsn gx0gx=0
141 138 140 sylibr g:0g-1Finkgkk=Nx¬x1Ngx0
142 15 adantl g:0g-1Finkgkk=Nx¬x1Nifx1N0N0=0
143 141 142 eleqtrrd g:0g-1Finkgkk=Nx¬x1Ngxifx1N0N0
144 115 143 pm2.61dan g:0g-1Finkgkk=Nxgxifx1N0N0
145 144 ralrimiva g:0g-1Finkgkk=Nxgxifx1N0N0
146 vex gV
147 146 elixp gxifx1N0N0gFnxgxifx1N0N0
148 22 145 147 sylanbrc g:0g-1Finkgkk=Ngxifx1N0N0
149 20 148 sylbi gPgxifx1N0N0
150 149 ssriv Pxifx1N0N0
151 ssfi xifx1N0N0FinPxifx1N0N0PFin
152 19 150 151 mp2an PFin