Metamath Proof Explorer


Theorem fpwwe2lem11

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
fpwwe2.4 X=domW
Assertion fpwwe2lem11 φXdomW

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 fpwwe2.4 X=domW
5 vex aV
6 5 eldm adomWsaWs
7 1 2 fpwwe2lem2 φaWsaAsa×asWeaya[˙s-1y/u]˙uFsu×u=y
8 7 simprbda φaWsaAsa×a
9 8 simpld φaWsaA
10 velpw a𝒫AaA
11 9 10 sylibr φaWsa𝒫A
12 11 ex φaWsa𝒫A
13 12 exlimdv φsaWsa𝒫A
14 6 13 biimtrid φadomWa𝒫A
15 14 ssrdv φdomW𝒫A
16 sspwuni domW𝒫AdomWA
17 15 16 sylib φdomWA
18 4 17 eqsstrid φXA
19 vex sV
20 19 elrn sranWaaWs
21 8 simprd φaWssa×a
22 1 relopabiv RelW
23 22 releldmi aWsadomW
24 23 adantl φaWsadomW
25 elssuni adomWadomW
26 24 25 syl φaWsadomW
27 26 4 sseqtrrdi φaWsaX
28 xpss12 aXaXa×aX×X
29 27 27 28 syl2anc φaWsa×aX×X
30 21 29 sstrd φaWssX×X
31 velpw s𝒫X×XsX×X
32 30 31 sylibr φaWss𝒫X×X
33 32 ex φaWss𝒫X×X
34 33 exlimdv φaaWss𝒫X×X
35 20 34 biimtrid φsranWs𝒫X×X
36 35 ssrdv φranW𝒫X×X
37 sspwuni ranW𝒫X×XranWX×X
38 36 37 sylib φranWX×X
39 18 38 jca φXAranWX×X
40 n0 nyyn
41 ssel2 nXynyX
42 41 adantl φnXynyX
43 4 eleq2i yXydomW
44 eluni2 ydomWadomWya
45 43 44 bitri yXadomWya
46 42 45 sylib φnXynadomWya
47 5 inex2 naV
48 47 a1i φnXynaWsyanaV
49 7 simplbda φaWssWeaya[˙s-1y/u]˙uFsu×u=y
50 49 simpld φaWssWea
51 50 ad2ant2r φnXynaWsyasWea
52 wefr sWeasFra
53 51 52 syl φnXynaWsyasFra
54 inss2 naa
55 54 a1i φnXynaWsyanaa
56 simplrr φnXynaWsyayn
57 simprr φnXynaWsyaya
58 inelcm ynyana
59 56 57 58 syl2anc φnXynaWsyana
60 fri naVsFranaanavnazna¬zsv
61 48 53 55 59 60 syl22anc φnXynaWsyavnazna¬zsv
62 simprl φnXynaWsyavnazna¬zsvvna
63 62 elin1d φnXynaWsyavnazna¬zsvvn
64 simplrr φnXynaWsyavnazna¬zsvwnzna¬zsv
65 ralnex zna¬zsv¬znazsv
66 64 65 sylib φnXynaWsyavnazna¬zsvwn¬znazsv
67 df-br wranWvwvranW
68 eluni2 wvranWtranWwvt
69 67 68 bitri wranWvtranWwvt
70 vex tV
71 70 elrn tranWbbWt
72 df-br wtvwvt
73 simprll φnXynaWsyavnazna¬zsvwnbWtwtvwn
74 73 adantr φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awn
75 simprr φnXynaWsyavnazna¬zsvwnbWtwtvwtv
76 simp-4l φnXynaWsyavnazna¬zsvwnbWtwtvφ
77 simprl φnXynaWsyaaWs
78 77 ad2antrr φnXynaWsyavnazna¬zsvwnbWtwtvaWs
79 simprlr φnXynaWsyavnazna¬zsvwnbWtwtvbWt
80 simprr φaWsbWtbWt
81 1 2 fpwwe2lem2 φbWtbAtb×btWebyb[˙t-1y/u]˙uFtu×u=y
82 81 adantr φaWsbWtbWtbAtb×btWebyb[˙t-1y/u]˙uFtu×u=y
83 80 82 mpbid φaWsbWtbAtb×btWebyb[˙t-1y/u]˙uFtu×u=y
84 83 simpld φaWsbWtbAtb×b
85 84 simprd φaWsbWttb×b
86 76 78 79 85 syl12anc φnXynaWsyavnazna¬zsvwnbWtwtvtb×b
87 86 ssbrd φnXynaWsyavnazna¬zsvwnbWtwtvwtvwb×bv
88 75 87 mpd φnXynaWsyavnazna¬zsvwnbWtwtvwb×bv
89 brxp wb×bvwbvb
90 89 simplbi wb×bvwb
91 88 90 syl φnXynaWsyavnazna¬zsvwnbWtwtvwb
92 91 adantr φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awb
93 62 elin2d φnXynaWsyavnazna¬zsvva
94 93 ad2antrr φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×ava
95 simplrr φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awtv
96 brinxp2 wtb×avwbvawtv
97 92 94 95 96 syl21anbrc φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awtb×av
98 simprr φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×as=tb×a
99 98 breqd φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awsvwtb×av
100 97 99 mpbird φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awsv
101 76 78 21 syl2anc φnXynaWsyavnazna¬zsvwnbWtwtvsa×a
102 101 adantr φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×asa×a
103 102 ssbrd φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awsvwa×av
104 100 103 mpd φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awa×av
105 brxp wa×avwava
106 105 simplbi wa×avwa
107 104 106 syl φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awa
108 74 107 elind φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×awna
109 breq1 z=wzsvwsv
110 109 rspcev wnawsvznazsv
111 108 100 110 syl2anc φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×aznazsv
112 73 adantr φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwn
113 simprl φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bba
114 91 adantr φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwb
115 113 114 sseldd φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwa
116 112 115 elind φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwna
117 simplrr φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwtv
118 simprr φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bt=sa×b
119 inss1 sa×bs
120 118 119 eqsstrdi φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bts
121 120 ssbrd φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwtvwsv
122 117 121 mpd φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bwsv
123 116 122 110 syl2anc φnXynaWsyavnazna¬zsvwnbWtwtvbat=sa×bznazsv
124 2 adantr φaWsbWtAV
125 3 adantlr φaWsbWtxArx×xrWexxFrA
126 simprl φaWsbWtaWs
127 1 124 125 126 80 fpwwe2lem9 φaWsbWtabs=tb×abat=sa×b
128 76 78 79 127 syl12anc φnXynaWsyavnazna¬zsvwnbWtwtvabs=tb×abat=sa×b
129 111 123 128 mpjaodan φnXynaWsyavnazna¬zsvwnbWtwtvznazsv
130 129 expr φnXynaWsyavnazna¬zsvwnbWtwtvznazsv
131 72 130 biimtrrid φnXynaWsyavnazna¬zsvwnbWtwvtznazsv
132 131 expr φnXynaWsyavnazna¬zsvwnbWtwvtznazsv
133 132 exlimdv φnXynaWsyavnazna¬zsvwnbbWtwvtznazsv
134 71 133 biimtrid φnXynaWsyavnazna¬zsvwntranWwvtznazsv
135 134 rexlimdv φnXynaWsyavnazna¬zsvwntranWwvtznazsv
136 69 135 biimtrid φnXynaWsyavnazna¬zsvwnwranWvznazsv
137 66 136 mtod φnXynaWsyavnazna¬zsvwn¬wranWv
138 137 ralrimiva φnXynaWsyavnazna¬zsvwn¬wranWv
139 61 63 138 reximssdv φnXynaWsyavnwn¬wranWv
140 139 exp32 φnXynaWsyavnwn¬wranWv
141 140 exlimdv φnXynsaWsyavnwn¬wranWv
142 6 141 biimtrid φnXynadomWyavnwn¬wranWv
143 142 rexlimdv φnXynadomWyavnwn¬wranWv
144 46 143 mpd φnXynvnwn¬wranWv
145 144 expr φnXynvnwn¬wranWv
146 145 exlimdv φnXyynvnwn¬wranWv
147 40 146 biimtrid φnXnvnwn¬wranWv
148 147 expimpd φnXnvnwn¬wranWv
149 148 alrimiv φnnXnvnwn¬wranWv
150 df-fr ranWFrXnnXnvnwn¬wranWv
151 149 150 sylibr φranWFrX
152 4 eleq2i wXwdomW
153 eluni2 wdomWbdomWwb
154 152 153 bitri wXbdomWwb
155 45 154 anbi12i yXwXadomWyabdomWwb
156 reeanv adomWbdomWyawbadomWyabdomWwb
157 155 156 bitr4i yXwXadomWbdomWyawb
158 vex bV
159 158 eldm bdomWtbWt
160 6 159 anbi12i adomWbdomWsaWstbWt
161 exdistrv staWsbWtsaWstbWt
162 160 161 bitr4i adomWbdomWstaWsbWt
163 83 simprd φaWsbWttWebyb[˙t-1y/u]˙uFtu×u=y
164 163 simpld φaWsbWttWeb
165 164 ad2antrr φaWsbWtyawbabs=tb×atWeb
166 weso tWebtOrb
167 165 166 syl φaWsbWtyawbabs=tb×atOrb
168 simprl φaWsbWtyawbabs=tb×aab
169 simplrl φaWsbWtyawbabs=tb×aya
170 168 169 sseldd φaWsbWtyawbabs=tb×ayb
171 simplrr φaWsbWtyawbabs=tb×awb
172 solin tOrbybwbytwy=wwty
173 167 170 171 172 syl12anc φaWsbWtyawbabs=tb×aytwy=wwty
174 22 relelrni bWttranW
175 174 ad2antll φaWsbWttranW
176 175 ad2antrr φaWsbWtyawbabs=tb×atranW
177 elssuni tranWtranW
178 176 177 syl φaWsbWtyawbabs=tb×atranW
179 178 ssbrd φaWsbWtyawbabs=tb×aytwyranWw
180 idd φaWsbWtyawbabs=tb×ay=wy=w
181 178 ssbrd φaWsbWtyawbabs=tb×awtywranWy
182 179 180 181 3orim123d φaWsbWtyawbabs=tb×aytwy=wwtyyranWwy=wwranWy
183 173 182 mpd φaWsbWtyawbabs=tb×ayranWwy=wwranWy
184 50 adantrr φaWsbWtsWea
185 184 ad2antrr φaWsbWtyawbbat=sa×bsWea
186 weso sWeasOra
187 185 186 syl φaWsbWtyawbbat=sa×bsOra
188 simplrl φaWsbWtyawbbat=sa×bya
189 simprl φaWsbWtyawbbat=sa×bba
190 simplrr φaWsbWtyawbbat=sa×bwb
191 189 190 sseldd φaWsbWtyawbbat=sa×bwa
192 solin sOrayawayswy=wwsy
193 187 188 191 192 syl12anc φaWsbWtyawbbat=sa×byswy=wwsy
194 22 relelrni aWssranW
195 194 ad2antrl φaWsbWtsranW
196 195 ad2antrr φaWsbWtyawbbat=sa×bsranW
197 elssuni sranWsranW
198 196 197 syl φaWsbWtyawbbat=sa×bsranW
199 198 ssbrd φaWsbWtyawbbat=sa×byswyranWw
200 idd φaWsbWtyawbbat=sa×by=wy=w
201 198 ssbrd φaWsbWtyawbbat=sa×bwsywranWy
202 199 200 201 3orim123d φaWsbWtyawbbat=sa×byswy=wwsyyranWwy=wwranWy
203 193 202 mpd φaWsbWtyawbbat=sa×byranWwy=wwranWy
204 127 adantr φaWsbWtyawbabs=tb×abat=sa×b
205 183 203 204 mpjaodan φaWsbWtyawbyranWwy=wwranWy
206 205 exp31 φaWsbWtyawbyranWwy=wwranWy
207 206 exlimdvv φstaWsbWtyawbyranWwy=wwranWy
208 162 207 biimtrid φadomWbdomWyawbyranWwy=wwranWy
209 208 rexlimdvv φadomWbdomWyawbyranWwy=wwranWy
210 157 209 biimtrid φyXwXyranWwy=wwranWy
211 210 ralrimivv φyXwXyranWwy=wwranWy
212 dfwe2 ranWWeXranWFrXyXwXyranWwy=wwranWy
213 151 211 212 sylanbrc φranWWeX
214 1 fpwwe2cbv W=zt|zAtz×ztWezwz[˙t-1w/b]˙bFtb×b=w
215 2 adantr φaWsAV
216 simpr φaWsaWs
217 214 215 216 fpwwe2lem3 φaWsyas-1yFss-1y×s-1y=y
218 217 anasss φaWsyas-1yFss-1y×s-1y=y
219 cnvimass ranW-1ydomranW
220 2 18 ssexd φXV
221 220 220 xpexd φX×XV
222 221 38 ssexd φranWV
223 222 adantr φaWsyaranWV
224 223 dmexd φaWsyadomranWV
225 ssexg ranW-1ydomranWdomranWVranW-1yV
226 219 224 225 sylancr φaWsyaranW-1yV
227 id u=ranW-1yu=ranW-1y
228 olc w=ywsyw=y
229 df-br zranWwzwranW
230 eluni2 zwranWtranWzwt
231 229 230 bitri zranWwtranWzwt
232 df-br ztwzwt
233 85 ad2antrr φaWsbWtwsyw=yyaabs=tb×atb×b
234 233 ssbrd φaWsbWtwsyw=yyaabs=tb×aztwzb×bw
235 brxp zb×bwzbwb
236 235 simplbi zb×bwzb
237 234 236 syl6 φaWsbWtwsyw=yyaabs=tb×aztwzb
238 21 adantrr φaWsbWtsa×a
239 238 ssbrd φaWsbWtwsywa×ay
240 239 imp φaWsbWtwsywa×ay
241 brxp wa×aywaya
242 241 simplbi wa×aywa
243 240 242 syl φaWsbWtwsywa
244 243 a1d φaWsbWtwsyyawa
245 elequ1 w=ywaya
246 245 biimprd w=yyawa
247 246 adantl φaWsbWtw=yyawa
248 244 247 jaodan φaWsbWtwsyw=yyawa
249 248 impr φaWsbWtwsyw=yyawa
250 249 adantr φaWsbWtwsyw=yyaabs=tb×awa
251 237 250 jctird φaWsbWtwsyw=yyaabs=tb×aztwzbwa
252 brxp zb×awzbwa
253 251 252 syl6ibr φaWsbWtwsyw=yyaabs=tb×aztwzb×aw
254 253 ancld φaWsbWtwsyw=yyaabs=tb×aztwztwzb×aw
255 simprr φaWsbWtwsyw=yyaabs=tb×as=tb×a
256 255 breqd φaWsbWtwsyw=yyaabs=tb×azswztb×aw
257 brin ztb×awztwzb×aw
258 256 257 bitrdi φaWsbWtwsyw=yyaabs=tb×azswztwzb×aw
259 254 258 sylibrd φaWsbWtwsyw=yyaabs=tb×aztwzsw
260 simprr φaWsbWtwsyw=yyabat=sa×bt=sa×b
261 260 119 eqsstrdi φaWsbWtwsyw=yyabat=sa×bts
262 261 ssbrd φaWsbWtwsyw=yyabat=sa×bztwzsw
263 127 adantr φaWsbWtwsyw=yyaabs=tb×abat=sa×b
264 259 262 263 mpjaodan φaWsbWtwsyw=yyaztwzsw
265 232 264 biimtrrid φaWsbWtwsyw=yyazwtzsw
266 265 exp32 φaWsbWtwsyw=yyazwtzsw
267 266 expr φaWsbWtwsyw=yyazwtzsw
268 267 com24 φaWsyawsyw=ybWtzwtzsw
269 268 impr φaWsyawsyw=ybWtzwtzsw
270 269 imp φaWsyawsyw=ybWtzwtzsw
271 270 exlimdv φaWsyawsyw=ybbWtzwtzsw
272 71 271 biimtrid φaWsyawsyw=ytranWzwtzsw
273 272 rexlimdv φaWsyawsyw=ytranWzwtzsw
274 231 273 biimtrid φaWsyawsyw=yzranWwzsw
275 228 274 sylan2 φaWsyaw=yzranWwzsw
276 275 ex φaWsyaw=yzranWwzsw
277 276 alrimiv φaWsyaww=yzranWwzsw
278 breq2 w=yzranWwzranWy
279 breq2 w=yzswzsy
280 278 279 imbi12d w=yzranWwzswzranWyzsy
281 280 equsalvw ww=yzranWwzswzranWyzsy
282 277 281 sylib φaWsyazranWyzsy
283 194 ad2antrl φaWsyasranW
284 283 197 syl φaWsyasranW
285 284 ssbrd φaWsyazsyzranWy
286 282 285 impbid φaWsyazranWyzsy
287 vex zV
288 287 eliniseg yVzranW-1yzranWy
289 288 elv zranW-1yzranWy
290 287 eliniseg yVzs-1yzsy
291 290 elv zs-1yzsy
292 286 289 291 3bitr4g φaWsyazranW-1yzs-1y
293 292 eqrdv φaWsyaranW-1y=s-1y
294 227 293 sylan9eqr φaWsyau=ranW-1yu=s-1y
295 294 sqxpeqd φaWsyau=ranW-1yu×u=s-1y×s-1y
296 295 ineq2d φaWsyau=ranW-1yranWu×u=ranWs-1y×s-1y
297 relinxp RelranWs-1y×s-1y
298 relinxp Relss-1y×s-1y
299 vex wV
300 299 eliniseg yVws-1ywsy
301 290 300 anbi12d yVzs-1yws-1yzsywsy
302 301 elv zs-1yws-1yzsywsy
303 orc wsywsyw=y
304 303 274 sylan2 φaWsyawsyzranWwzsw
305 304 adantrl φaWsyazsywsyzranWwzsw
306 284 adantr φaWsyazsywsysranW
307 306 ssbrd φaWsyazsywsyzswzranWw
308 305 307 impbid φaWsyazsywsyzranWwzsw
309 302 308 sylan2b φaWsyazs-1yws-1yzranWwzsw
310 309 pm5.32da φaWsyazs-1yws-1yzranWwzs-1yws-1yzsw
311 df-br zranWs-1y×s-1ywzwranWs-1y×s-1y
312 brinxp2 zranWs-1y×s-1ywzs-1yws-1yzranWw
313 311 312 bitr3i zwranWs-1y×s-1yzs-1yws-1yzranWw
314 df-br zss-1y×s-1ywzwss-1y×s-1y
315 brinxp2 zss-1y×s-1ywzs-1yws-1yzsw
316 314 315 bitr3i zwss-1y×s-1yzs-1yws-1yzsw
317 310 313 316 3bitr4g φaWsyazwranWs-1y×s-1yzwss-1y×s-1y
318 297 298 317 eqrelrdv φaWsyaranWs-1y×s-1y=ss-1y×s-1y
319 318 adantr φaWsyau=ranW-1yranWs-1y×s-1y=ss-1y×s-1y
320 296 319 eqtrd φaWsyau=ranW-1yranWu×u=ss-1y×s-1y
321 294 320 oveq12d φaWsyau=ranW-1yuFranWu×u=s-1yFss-1y×s-1y
322 321 eqeq1d φaWsyau=ranW-1yuFranWu×u=ys-1yFss-1y×s-1y=y
323 226 322 sbcied φaWsya[˙ranW-1y/u]˙uFranWu×u=ys-1yFss-1y×s-1y=y
324 218 323 mpbird φaWsya[˙ranW-1y/u]˙uFranWu×u=y
325 324 exp32 φaWsya[˙ranW-1y/u]˙uFranWu×u=y
326 325 exlimdv φsaWsya[˙ranW-1y/u]˙uFranWu×u=y
327 6 326 biimtrid φadomWya[˙ranW-1y/u]˙uFranWu×u=y
328 327 rexlimdv φadomWya[˙ranW-1y/u]˙uFranWu×u=y
329 45 328 biimtrid φyX[˙ranW-1y/u]˙uFranWu×u=y
330 329 ralrimiv φyX[˙ranW-1y/u]˙uFranWu×u=y
331 213 330 jca φranWWeXyX[˙ranW-1y/u]˙uFranWu×u=y
332 1 2 fpwwe2lem2 φXWranWXAranWX×XranWWeXyX[˙ranW-1y/u]˙uFranWu×u=y
333 39 331 332 mpbir2and φXWranW
334 22 releldmi XWranWXdomW
335 333 334 syl φXdomW