Metamath Proof Explorer


Theorem frlmphl

Description: Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmphl.y Y=RfreeLModI
frlmphl.b B=BaseR
frlmphl.t ·˙=R
frlmphl.v V=BaseY
frlmphl.j ,˙=𝑖Y
frlmphl.o O=0Y
frlmphl.0 0˙=0R
frlmphl.s ˙=*R
frlmphl.f φRField
frlmphl.m φgVg,˙g=0˙g=O
frlmphl.u φxB˙x=x
frlmphl.i φIW
Assertion frlmphl φYPreHil

Proof

Step Hyp Ref Expression
1 frlmphl.y Y=RfreeLModI
2 frlmphl.b B=BaseR
3 frlmphl.t ·˙=R
4 frlmphl.v V=BaseY
5 frlmphl.j ,˙=𝑖Y
6 frlmphl.o O=0Y
7 frlmphl.0 0˙=0R
8 frlmphl.s ˙=*R
9 frlmphl.f φRField
10 frlmphl.m φgVg,˙g=0˙g=O
11 frlmphl.u φxB˙x=x
12 frlmphl.i φIW
13 4 a1i φV=BaseY
14 eqidd φ+Y=+Y
15 eqidd φY=Y
16 5 a1i φ,˙=𝑖Y
17 6 a1i φO=0Y
18 isfld RFieldRDivRingRCRing
19 9 18 sylib φRDivRingRCRing
20 19 simpld φRDivRing
21 1 frlmsca RDivRingIWR=ScalarY
22 20 12 21 syl2anc φR=ScalarY
23 2 a1i φB=BaseR
24 eqidd φ+R=+R
25 3 a1i φ·˙=R
26 8 a1i φ˙=*R
27 7 a1i φ0˙=0R
28 20 drngringd φRRing
29 1 frlmlmod RRingIWYLMod
30 28 12 29 syl2anc φYLMod
31 22 20 eqeltrrd φScalarYDivRing
32 eqid ScalarY=ScalarY
33 32 islvec YLVecYLModScalarYDivRing
34 30 31 33 sylanbrc φYLVec
35 9 fldcrngd φRCRing
36 2 8 35 11 idsrngd φR*-Ring
37 12 3ad2ant1 φgVhVIW
38 28 3ad2ant1 φgVhVRRing
39 simp2 φgVhVgV
40 simp3 φgVhVhV
41 1 2 3 4 5 frlmipval IWRRinggVhVg,˙h=Rg·˙fh
42 37 38 39 40 41 syl22anc φgVhVg,˙h=Rg·˙fh
43 1 2 4 frlmbasmap IWgVgBI
44 37 39 43 syl2anc φgVhVgBI
45 elmapi gBIg:IB
46 44 45 syl φgVhVg:IB
47 46 ffnd φgVhVgFnI
48 1 2 4 frlmbasmap IWhVhBI
49 37 40 48 syl2anc φgVhVhBI
50 elmapi hBIh:IB
51 49 50 syl φgVhVh:IB
52 51 ffnd φgVhVhFnI
53 inidm II=I
54 eqidd φgVhVxIgx=gx
55 eqidd φgVhVxIhx=hx
56 47 52 37 37 53 54 55 offval φgVhVg·˙fh=xIgx·˙hx
57 56 oveq2d φgVhVRg·˙fh=RxIgx·˙hx
58 42 57 eqtrd φgVhVg,˙h=RxIgx·˙hx
59 28 ringcmnd φRCMnd
60 59 3ad2ant1 φgVhVRCMnd
61 38 adantr φgVhVxIRRing
62 46 ffvelcdmda φgVhVxIgxB
63 51 ffvelcdmda φgVhVxIhxB
64 2 3 61 62 63 ringcld φgVhVxIgx·˙hxB
65 64 fmpttd φgVhVxIgx·˙hx:IB
66 1 2 3 4 5 6 7 8 9 10 11 12 frlmphllem φgVhVfinSupp0˙xIgx·˙hx
67 2 7 60 37 65 66 gsumcl φgVhVRxIgx·˙hxB
68 58 67 eqeltrd φgVhVg,˙hB
69 eqid +R=+R
70 59 3ad2ant1 φkBgVhViVRCMnd
71 12 3ad2ant1 φkBgVhViVIW
72 28 3ad2ant1 φkBgVhViVRRing
73 72 adantr φkBgVhViVxIRRing
74 simp2 φkBgVhViVkB
75 74 adantr φkBgVhViVxIkB
76 simp31 φkBgVhViVgV
77 71 76 43 syl2anc φkBgVhViVgBI
78 77 45 syl φkBgVhViVg:IB
79 78 ffvelcdmda φkBgVhViVxIgxB
80 simp33 φkBgVhViViV
81 1 2 4 frlmbasmap IWiViBI
82 71 80 81 syl2anc φkBgVhViViBI
83 elmapi iBIi:IB
84 82 83 syl φkBgVhViVi:IB
85 84 ffvelcdmda φkBgVhViVxIixB
86 2 3 73 79 85 ringcld φkBgVhViVxIgx·˙ixB
87 2 3 73 75 86 ringcld φkBgVhViVxIk·˙gx·˙ixB
88 simp32 φkBgVhViVhV
89 71 88 48 syl2anc φkBgVhViVhBI
90 89 50 syl φkBgVhViVh:IB
91 90 ffvelcdmda φkBgVhViVxIhxB
92 2 3 73 91 85 ringcld φkBgVhViVxIhx·˙ixB
93 eqidd φkBgVhViVxIk·˙gx·˙ix=xIk·˙gx·˙ix
94 eqidd φkBgVhViVxIhx·˙ix=xIhx·˙ix
95 fveq2 x=ygx=gy
96 95 oveq2d x=yk·˙gx=k·˙gy
97 96 cbvmptv xIk·˙gx=yIk·˙gy
98 97 oveq1i xIk·˙gx·˙fi=yIk·˙gy·˙fi
99 2 3 73 75 79 ringcld φkBgVhViVxIk·˙gxB
100 99 fmpttd φkBgVhViVxIk·˙gx:IB
101 100 ffnd φkBgVhViVxIk·˙gxFnI
102 97 fneq1i xIk·˙gxFnIyIk·˙gyFnI
103 101 102 sylib φkBgVhViVyIk·˙gyFnI
104 84 ffnd φkBgVhViViFnI
105 eqidd φkBgVhViVxIyIk·˙gy=yIk·˙gy
106 simpr φkBgVhViVxIy=xy=x
107 106 fveq2d φkBgVhViVxIy=xgy=gx
108 107 oveq2d φkBgVhViVxIy=xk·˙gy=k·˙gx
109 simpr φkBgVhViVxIxI
110 ovexd φkBgVhViVxIk·˙gxV
111 105 108 109 110 fvmptd φkBgVhViVxIyIk·˙gyx=k·˙gx
112 eqidd φkBgVhViVxIix=ix
113 103 104 71 71 53 111 112 offval φkBgVhViVyIk·˙gy·˙fi=xIk·˙gx·˙ix
114 2 3 ringass RRingkBgxBixBk·˙gx·˙ix=k·˙gx·˙ix
115 73 75 79 85 114 syl13anc φkBgVhViVxIk·˙gx·˙ix=k·˙gx·˙ix
116 115 mpteq2dva φkBgVhViVxIk·˙gx·˙ix=xIk·˙gx·˙ix
117 113 116 eqtrd φkBgVhViVyIk·˙gy·˙fi=xIk·˙gx·˙ix
118 98 117 eqtrid φkBgVhViVxIk·˙gx·˙fi=xIk·˙gx·˙ix
119 ovexd φkBgVhViVxIk·˙gx·˙fiV
120 101 104 71 71 offun φkBgVhViVFunxIk·˙gx·˙fi
121 simp3 gVhViViV
122 12 121 anim12i φgVhViVIWiV
123 122 3adant2 φkBgVhViVIWiV
124 1 7 4 frlmbasfsupp IWiVfinSupp0˙i
125 123 124 syl φkBgVhViVfinSupp0˙i
126 2 7 ring0cl RRing0˙B
127 72 126 syl φkBgVhViV0˙B
128 2 3 7 ringrz RRingyBy·˙0˙=0˙
129 72 128 sylan φkBgVhViVyBy·˙0˙=0˙
130 71 127 100 84 129 suppofss2d φkBgVhViVxIk·˙gx·˙fisupp0˙isupp0˙
131 fsuppsssupp xIk·˙gx·˙fiVFunxIk·˙gx·˙fifinSupp0˙ixIk·˙gx·˙fisupp0˙isupp0˙finSupp0˙xIk·˙gx·˙fi
132 119 120 125 130 131 syl22anc φkBgVhViVfinSupp0˙xIk·˙gx·˙fi
133 118 132 eqbrtrrd φkBgVhViVfinSupp0˙xIk·˙gx·˙ix
134 simp1 φkBgVhViVφ
135 eleq1w g=hgVhV
136 id g=hg=h
137 136 136 oveq12d g=hg,˙g=h,˙h
138 137 eqeq1d g=hg,˙g=0˙h,˙h=0˙
139 135 138 3anbi23d g=hφgVg,˙g=0˙φhVh,˙h=0˙
140 eqeq1 g=hg=Oh=O
141 139 140 imbi12d g=hφgVg,˙g=0˙g=OφhVh,˙h=0˙h=O
142 141 10 chvarvv φhVh,˙h=0˙h=O
143 1 2 3 4 5 6 7 8 9 142 11 12 frlmphllem φhViVfinSupp0˙xIhx·˙ix
144 134 88 80 143 syl3anc φkBgVhViVfinSupp0˙xIhx·˙ix
145 2 7 69 70 71 87 92 93 94 133 144 gsummptfsadd φkBgVhViVRxIk·˙gx·˙ix+Rhx·˙ix=RxIk·˙gx·˙ix+RRxIhx·˙ix
146 1 2 3 frlmip IWRDivRinggBI,hBIRxIgx·˙hx=𝑖Y
147 12 20 146 syl2anc φgBI,hBIRxIgx·˙hx=𝑖Y
148 5 147 eqtr4id φ,˙=gBI,hBIRxIgx·˙hx
149 fveq1 e=gex=gx
150 149 oveq1d e=gex·˙fx=gx·˙fx
151 150 mpteq2dv e=gxIex·˙fx=xIgx·˙fx
152 151 oveq2d e=gRxIex·˙fx=RxIgx·˙fx
153 fveq1 f=hfx=hx
154 153 oveq2d f=hgx·˙fx=gx·˙hx
155 154 mpteq2dv f=hxIgx·˙fx=xIgx·˙hx
156 155 oveq2d f=hRxIgx·˙fx=RxIgx·˙hx
157 152 156 cbvmpov eBI,fBIRxIex·˙fx=gBI,hBIRxIgx·˙hx
158 148 157 eqtr4di φ,˙=eBI,fBIRxIex·˙fx
159 158 3ad2ant1 φkBgVhViV,˙=eBI,fBIRxIex·˙fx
160 simprl φkBgVhViVe=kYg+Yhf=ie=kYg+Yh
161 160 fveq1d φkBgVhViVe=kYg+Yhf=iex=kYg+Yhx
162 simprr φkBgVhViVe=kYg+Yhf=if=i
163 162 fveq1d φkBgVhViVe=kYg+Yhf=ifx=ix
164 161 163 oveq12d φkBgVhViVe=kYg+Yhf=iex·˙fx=kYg+Yhx·˙ix
165 164 mpteq2dv φkBgVhViVe=kYg+Yhf=ixIex·˙fx=xIkYg+Yhx·˙ix
166 165 oveq2d φkBgVhViVe=kYg+Yhf=iRxIex·˙fx=RxIkYg+Yhx·˙ix
167 30 3ad2ant1 φkBgVhViVYLMod
168 22 3ad2ant1 φkBgVhViVR=ScalarY
169 168 fveq2d φkBgVhViVBaseR=BaseScalarY
170 2 169 eqtrid φkBgVhViVB=BaseScalarY
171 74 170 eleqtrd φkBgVhViVkBaseScalarY
172 eqid Y=Y
173 eqid BaseScalarY=BaseScalarY
174 4 32 172 173 lmodvscl YLModkBaseScalarYgVkYgV
175 167 171 76 174 syl3anc φkBgVhViVkYgV
176 eqid +Y=+Y
177 4 176 lmodvacl YLModkYgVhVkYg+YhV
178 167 175 88 177 syl3anc φkBgVhViVkYg+YhV
179 1 2 4 frlmbasmap IWkYg+YhVkYg+YhBI
180 71 178 179 syl2anc φkBgVhViVkYg+YhBI
181 ovexd φkBgVhViVRxIkYg+Yhx·˙ixV
182 159 166 180 82 181 ovmpod φkBgVhViVkYg+Yh,˙i=RxIkYg+Yhx·˙ix
183 1 4 72 71 175 88 69 176 frlmplusgval φkBgVhViVkYg+Yh=kYg+Rfh
184 1 2 4 frlmbasmap IWkYgVkYgBI
185 71 175 184 syl2anc φkBgVhViVkYgBI
186 elmapi kYgBIkYg:IB
187 ffn kYg:IBkYgFnI
188 185 186 187 3syl φkBgVhViVkYgFnI
189 90 ffnd φkBgVhViVhFnI
190 71 adantr φkBgVhViVxIIW
191 76 adantr φkBgVhViVxIgV
192 1 4 2 190 75 191 109 172 3 frlmvscaval φkBgVhViVxIkYgx=k·˙gx
193 eqidd φkBgVhViVxIhx=hx
194 188 189 71 71 53 192 193 offval φkBgVhViVkYg+Rfh=xIk·˙gx+Rhx
195 183 194 eqtrd φkBgVhViVkYg+Yh=xIk·˙gx+Rhx
196 ovexd φkBgVhViVxIk·˙gx+RhxV
197 195 196 fvmpt2d φkBgVhViVxIkYg+Yhx=k·˙gx+Rhx
198 197 oveq1d φkBgVhViVxIkYg+Yhx·˙ix=k·˙gx+Rhx·˙ix
199 2 69 3 ringdir RRingk·˙gxBhxBixBk·˙gx+Rhx·˙ix=k·˙gx·˙ix+Rhx·˙ix
200 73 99 91 85 199 syl13anc φkBgVhViVxIk·˙gx+Rhx·˙ix=k·˙gx·˙ix+Rhx·˙ix
201 115 oveq1d φkBgVhViVxIk·˙gx·˙ix+Rhx·˙ix=k·˙gx·˙ix+Rhx·˙ix
202 198 200 201 3eqtrd φkBgVhViVxIkYg+Yhx·˙ix=k·˙gx·˙ix+Rhx·˙ix
203 202 mpteq2dva φkBgVhViVxIkYg+Yhx·˙ix=xIk·˙gx·˙ix+Rhx·˙ix
204 203 oveq2d φkBgVhViVRxIkYg+Yhx·˙ix=RxIk·˙gx·˙ix+Rhx·˙ix
205 182 204 eqtrd φkBgVhViVkYg+Yh,˙i=RxIk·˙gx·˙ix+Rhx·˙ix
206 simprl φkBgVhViVe=gf=ie=g
207 206 fveq1d φkBgVhViVe=gf=iex=gx
208 simprr φkBgVhViVe=gf=if=i
209 208 fveq1d φkBgVhViVe=gf=ifx=ix
210 207 209 oveq12d φkBgVhViVe=gf=iex·˙fx=gx·˙ix
211 210 mpteq2dv φkBgVhViVe=gf=ixIex·˙fx=xIgx·˙ix
212 211 oveq2d φkBgVhViVe=gf=iRxIex·˙fx=RxIgx·˙ix
213 ovexd φkBgVhViVRxIgx·˙ixV
214 159 212 77 82 213 ovmpod φkBgVhViVg,˙i=RxIgx·˙ix
215 214 oveq2d φkBgVhViVk·˙g,˙i=k·˙RxIgx·˙ix
216 1 2 3 4 5 6 7 8 9 10 11 12 frlmphllem φgViVfinSupp0˙xIgx·˙ix
217 134 76 80 216 syl3anc φkBgVhViVfinSupp0˙xIgx·˙ix
218 2 7 3 72 71 74 86 217 gsummulc2 φkBgVhViVRxIk·˙gx·˙ix=k·˙RxIgx·˙ix
219 215 218 eqtr4d φkBgVhViVk·˙g,˙i=RxIk·˙gx·˙ix
220 simprl φkBgVhViVe=hf=ie=h
221 220 fveq1d φkBgVhViVe=hf=iex=hx
222 simprr φkBgVhViVe=hf=if=i
223 222 fveq1d φkBgVhViVe=hf=ifx=ix
224 221 223 oveq12d φkBgVhViVe=hf=iex·˙fx=hx·˙ix
225 224 mpteq2dv φkBgVhViVe=hf=ixIex·˙fx=xIhx·˙ix
226 225 oveq2d φkBgVhViVe=hf=iRxIex·˙fx=RxIhx·˙ix
227 ovexd φkBgVhViVRxIhx·˙ixV
228 159 226 89 82 227 ovmpod φkBgVhViVh,˙i=RxIhx·˙ix
229 219 228 oveq12d φkBgVhViVk·˙g,˙i+Rh,˙i=RxIk·˙gx·˙ix+RRxIhx·˙ix
230 145 205 229 3eqtr4d φkBgVhViVkYg+Yh,˙i=k·˙g,˙i+Rh,˙i
231 35 3ad2ant1 φgVhVRCRing
232 231 adantr φgVhVxIRCRing
233 2 3 crngcom RCRinghxBgxBhx·˙gx=gx·˙hx
234 232 63 62 233 syl3anc φgVhVxIhx·˙gx=gx·˙hx
235 234 mpteq2dva φgVhVxIhx·˙gx=xIgx·˙hx
236 235 oveq2d φgVhVRxIhx·˙gx=RxIgx·˙hx
237 158 3ad2ant1 φgVhV,˙=eBI,fBIRxIex·˙fx
238 simprl φgVhVe=hf=ge=h
239 238 fveq1d φgVhVe=hf=gex=hx
240 simprr φgVhVe=hf=gf=g
241 240 fveq1d φgVhVe=hf=gfx=gx
242 239 241 oveq12d φgVhVe=hf=gex·˙fx=hx·˙gx
243 242 mpteq2dv φgVhVe=hf=gxIex·˙fx=xIhx·˙gx
244 243 oveq2d φgVhVe=hf=gRxIex·˙fx=RxIhx·˙gx
245 ovexd φgVhVRxIhx·˙gxV
246 237 244 49 44 245 ovmpod φgVhVh,˙g=RxIhx·˙gx
247 fveq2 x=g,˙h˙x=˙g,˙h
248 id x=g,˙hx=g,˙h
249 247 248 eqeq12d x=g,˙h˙x=x˙g,˙h=g,˙h
250 11 ralrimiva φxB˙x=x
251 250 3ad2ant1 φgVhVxB˙x=x
252 249 251 68 rspcdva φgVhV˙g,˙h=g,˙h
253 252 58 eqtrd φgVhV˙g,˙h=RxIgx·˙hx
254 236 246 253 3eqtr4rd φgVhV˙g,˙h=h,˙g
255 13 14 15 16 17 22 23 24 25 26 27 34 36 68 230 10 254 isphld φYPreHil