Metamath Proof Explorer


Theorem fta1blem

Description: Lemma for fta1b . (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses fta1b.p P=Poly1R
fta1b.b B=BaseP
fta1b.d D=deg1R
fta1b.o O=eval1R
fta1b.w W=0R
fta1b.z 0˙=0P
fta1blem.k K=BaseR
fta1blem.t ×˙=R
fta1blem.x X=var1R
fta1blem.s ·˙=P
fta1blem.1 φRCRing
fta1blem.2 φMK
fta1blem.3 φNK
fta1blem.4 φM×˙N=W
fta1blem.5 φMW
fta1blem.6 φM·˙XB0˙OM·˙X-1WDM·˙X
Assertion fta1blem φN=W

Proof

Step Hyp Ref Expression
1 fta1b.p P=Poly1R
2 fta1b.b B=BaseP
3 fta1b.d D=deg1R
4 fta1b.o O=eval1R
5 fta1b.w W=0R
6 fta1b.z 0˙=0P
7 fta1blem.k K=BaseR
8 fta1blem.t ×˙=R
9 fta1blem.x X=var1R
10 fta1blem.s ·˙=P
11 fta1blem.1 φRCRing
12 fta1blem.2 φMK
13 fta1blem.3 φNK
14 fta1blem.4 φM×˙N=W
15 fta1blem.5 φMW
16 fta1blem.6 φM·˙XB0˙OM·˙X-1WDM·˙X
17 4 9 7 1 2 11 13 evl1vard φXBOXN=N
18 4 1 7 2 11 13 17 12 10 8 evl1vsd φM·˙XBOM·˙XN=M×˙N
19 18 simprd φOM·˙XN=M×˙N
20 19 14 eqtrd φOM·˙XN=W
21 eqid R𝑠K=R𝑠K
22 eqid BaseR𝑠K=BaseR𝑠K
23 7 fvexi KV
24 23 a1i φKV
25 4 1 21 7 evl1rhm RCRingOPRingHomR𝑠K
26 11 25 syl φOPRingHomR𝑠K
27 2 22 rhmf OPRingHomR𝑠KO:BBaseR𝑠K
28 26 27 syl φO:BBaseR𝑠K
29 18 simpld φM·˙XB
30 28 29 ffvelcdmd φOM·˙XBaseR𝑠K
31 21 7 22 11 24 30 pwselbas φOM·˙X:KK
32 31 ffnd φOM·˙XFnK
33 fniniseg OM·˙XFnKNOM·˙X-1WNKOM·˙XN=W
34 32 33 syl φNOM·˙X-1WNKOM·˙XN=W
35 13 20 34 mpbir2and φNOM·˙X-1W
36 fvex OM·˙XV
37 36 cnvex OM·˙X-1V
38 37 imaex OM·˙X-1WV
39 38 a1i φOM·˙X-1WV
40 1nn0 10
41 40 a1i φ10
42 crngring RCRingRRing
43 11 42 syl φRRing
44 9 1 2 vr1cl RRingXB
45 43 44 syl φXB
46 eqid mulGrpP=mulGrpP
47 46 2 mgpbas B=BasemulGrpP
48 eqid mulGrpP=mulGrpP
49 47 48 mulg1 XB1mulGrpPX=X
50 45 49 syl φ1mulGrpPX=X
51 50 oveq2d φM·˙1mulGrpPX=M·˙X
52 5 7 1 9 10 46 48 coe1tmfv1 RRingMK10coe1M·˙1mulGrpPX1=M
53 43 12 41 52 syl3anc φcoe1M·˙1mulGrpPX1=M
54 1 6 5 coe1z RRingcoe10˙=0×W
55 43 54 syl φcoe10˙=0×W
56 55 fveq1d φcoe10˙1=0×W1
57 5 fvexi WV
58 57 fvconst2 100×W1=W
59 40 58 ax-mp 0×W1=W
60 56 59 eqtrdi φcoe10˙1=W
61 15 53 60 3netr4d φcoe1M·˙1mulGrpPX1coe10˙1
62 fveq2 M·˙1mulGrpPX=0˙coe1M·˙1mulGrpPX=coe10˙
63 62 fveq1d M·˙1mulGrpPX=0˙coe1M·˙1mulGrpPX1=coe10˙1
64 63 necon3i coe1M·˙1mulGrpPX1coe10˙1M·˙1mulGrpPX0˙
65 61 64 syl φM·˙1mulGrpPX0˙
66 51 65 eqnetrrd φM·˙X0˙
67 eldifsn M·˙XB0˙M·˙XBM·˙X0˙
68 29 66 67 sylanbrc φM·˙XB0˙
69 68 16 mpd φOM·˙X-1WDM·˙X
70 51 fveq2d φDM·˙1mulGrpPX=DM·˙X
71 3 7 1 9 10 46 48 5 deg1tm RRingMKMW10DM·˙1mulGrpPX=1
72 43 12 15 41 71 syl121anc φDM·˙1mulGrpPX=1
73 70 72 eqtr3d φDM·˙X=1
74 69 73 breqtrd φOM·˙X-1W1
75 hashbnd OM·˙X-1WV10OM·˙X-1W1OM·˙X-1WFin
76 39 41 74 75 syl3anc φOM·˙X-1WFin
77 7 5 ring0cl RRingWK
78 43 77 syl φWK
79 eqid algScP=algScP
80 1 79 7 2 ply1sclf RRingalgScP:KB
81 43 80 syl φalgScP:KB
82 81 12 ffvelcdmd φalgScPMB
83 eqid P=P
84 eqid R𝑠K=R𝑠K
85 2 83 84 rhmmul OPRingHomR𝑠KalgScPMBXBOalgScPMPX=OalgScPMR𝑠KOX
86 26 82 45 85 syl3anc φOalgScPMPX=OalgScPMR𝑠KOX
87 1 ply1assa RCRingPAssAlg
88 11 87 syl φPAssAlg
89 1 ply1sca RCRingR=ScalarP
90 11 89 syl φR=ScalarP
91 90 fveq2d φBaseR=BaseScalarP
92 7 91 eqtrid φK=BaseScalarP
93 12 92 eleqtrd φMBaseScalarP
94 eqid ScalarP=ScalarP
95 eqid BaseScalarP=BaseScalarP
96 79 94 95 2 83 10 asclmul1 PAssAlgMBaseScalarPXBalgScPMPX=M·˙X
97 88 93 45 96 syl3anc φalgScPMPX=M·˙X
98 97 fveq2d φOalgScPMPX=OM·˙X
99 28 82 ffvelcdmd φOalgScPMBaseR𝑠K
100 28 45 ffvelcdmd φOXBaseR𝑠K
101 21 22 11 24 99 100 8 84 pwsmulrval φOalgScPMR𝑠KOX=OalgScPM×˙fOX
102 4 1 7 79 evl1sca RCRingMKOalgScPM=K×M
103 11 12 102 syl2anc φOalgScPM=K×M
104 4 9 7 evl1var RCRingOX=IK
105 11 104 syl φOX=IK
106 103 105 oveq12d φOalgScPM×˙fOX=K×M×˙fIK
107 101 106 eqtrd φOalgScPMR𝑠KOX=K×M×˙fIK
108 86 98 107 3eqtr3d φOM·˙X=K×M×˙fIK
109 108 fveq1d φOM·˙XW=K×M×˙fIKW
110 fnconstg MKK×MFnK
111 12 110 syl φK×MFnK
112 fnresi IKFnK
113 112 a1i φIKFnK
114 fnfvof K×MFnKIKFnKKVWKK×M×˙fIKW=K×MW×˙IKW
115 111 113 24 78 114 syl22anc φK×M×˙fIKW=K×MW×˙IKW
116 fvconst2g MKWKK×MW=M
117 12 78 116 syl2anc φK×MW=M
118 fvresi WKIKW=W
119 78 118 syl φIKW=W
120 117 119 oveq12d φK×MW×˙IKW=M×˙W
121 7 8 5 ringrz RRingMKM×˙W=W
122 43 12 121 syl2anc φM×˙W=W
123 120 122 eqtrd φK×MW×˙IKW=W
124 115 123 eqtrd φK×M×˙fIKW=W
125 109 124 eqtrd φOM·˙XW=W
126 fniniseg OM·˙XFnKWOM·˙X-1WWKOM·˙XW=W
127 32 126 syl φWOM·˙X-1WWKOM·˙XW=W
128 78 125 127 mpbir2and φWOM·˙X-1W
129 128 snssd φWOM·˙X-1W
130 hashsng WKW=1
131 78 130 syl φW=1
132 ssdomg OM·˙X-1WVWOM·˙X-1WWOM·˙X-1W
133 38 129 132 mpsyl φWOM·˙X-1W
134 snfi WFin
135 hashdom WFinOM·˙X-1WVWOM·˙X-1WWOM·˙X-1W
136 134 38 135 mp2an WOM·˙X-1WWOM·˙X-1W
137 133 136 sylibr φWOM·˙X-1W
138 131 137 eqbrtrrd φ1OM·˙X-1W
139 hashcl OM·˙X-1WFinOM·˙X-1W0
140 76 139 syl φOM·˙X-1W0
141 140 nn0red φOM·˙X-1W
142 1re 1
143 letri3 OM·˙X-1W1OM·˙X-1W=1OM·˙X-1W11OM·˙X-1W
144 141 142 143 sylancl φOM·˙X-1W=1OM·˙X-1W11OM·˙X-1W
145 74 138 144 mpbir2and φOM·˙X-1W=1
146 131 145 eqtr4d φW=OM·˙X-1W
147 hashen WFinOM·˙X-1WFinW=OM·˙X-1WWOM·˙X-1W
148 134 76 147 sylancr φW=OM·˙X-1WWOM·˙X-1W
149 146 148 mpbid φWOM·˙X-1W
150 fisseneq OM·˙X-1WFinWOM·˙X-1WWOM·˙X-1WW=OM·˙X-1W
151 76 129 149 150 syl3anc φW=OM·˙X-1W
152 35 151 eleqtrrd φNW
153 elsni NWN=W
154 152 153 syl φN=W