Metamath Proof Explorer


Theorem hofcl

Description: Closure of the Hom functor. Note that the codomain is the category SetCatU for any universe U which contains each Hom-set. This corresponds to the assertion that C be locally small (with respect to U ). (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofcl.m M=HomFC
hofcl.o O=oppCatC
hofcl.d D=SetCatU
hofcl.c φCCat
hofcl.u φUV
hofcl.h φranHom𝑓CU
Assertion hofcl φMO×cCFuncD

Proof

Step Hyp Ref Expression
1 hofcl.m M=HomFC
2 hofcl.o O=oppCatC
3 hofcl.d D=SetCatU
4 hofcl.c φCCat
5 hofcl.u φUV
6 hofcl.h φranHom𝑓CU
7 eqid BaseC=BaseC
8 eqid HomC=HomC
9 eqid compC=compC
10 1 4 7 8 9 hofval φM=Hom𝑓CxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
11 fvex Hom𝑓CV
12 fvex BaseCV
13 12 12 xpex BaseC×BaseCV
14 13 13 mpoex xBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfV
15 11 14 op2ndd M=Hom𝑓CxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf2ndM=xBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
16 10 15 syl φ2ndM=xBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
17 16 opeq2d φHom𝑓C2ndM=Hom𝑓CxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
18 10 17 eqtr4d φM=Hom𝑓C2ndM
19 eqid O×cC=O×cC
20 2 7 oppcbas BaseC=BaseO
21 19 20 7 xpcbas BaseC×BaseC=BaseO×cC
22 eqid BaseD=BaseD
23 eqid HomO×cC=HomO×cC
24 eqid HomD=HomD
25 eqid IdO×cC=IdO×cC
26 eqid IdD=IdD
27 eqid compO×cC=compO×cC
28 eqid compD=compD
29 2 oppccat CCatOCat
30 4 29 syl φOCat
31 19 30 4 xpccat φO×cCCat
32 3 setccat UVDCat
33 5 32 syl φDCat
34 eqid Hom𝑓C=Hom𝑓C
35 34 7 homffn Hom𝑓CFnBaseC×BaseC
36 35 a1i φHom𝑓CFnBaseC×BaseC
37 df-f Hom𝑓C:BaseC×BaseCUHom𝑓CFnBaseC×BaseCranHom𝑓CU
38 36 6 37 sylanbrc φHom𝑓C:BaseC×BaseCU
39 3 5 setcbas φU=BaseD
40 39 feq3d φHom𝑓C:BaseC×BaseCUHom𝑓C:BaseC×BaseCBaseD
41 38 40 mpbid φHom𝑓C:BaseC×BaseCBaseD
42 eqid xBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf=xBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
43 ovex 1styHomC1stxV
44 ovex 2ndxHomC2ndyV
45 43 44 mpoex f1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfV
46 42 45 fnmpoi xBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfFnBaseC×BaseC×BaseC×BaseC
47 16 fneq1d φ2ndMFnBaseC×BaseC×BaseC×BaseCxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfFnBaseC×BaseC×BaseC×BaseC
48 46 47 mpbiri φ2ndMFnBaseC×BaseC×BaseC×BaseC
49 4 ad3antrrr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxCCat
50 simplrr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyyBaseC×BaseC
51 xp1st yBaseC×BaseC1styBaseC
52 50 51 syl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndy1styBaseC
53 52 adantr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCx1styBaseC
54 simplrl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyxBaseC×BaseC
55 xp1st xBaseC×BaseC1stxBaseC
56 54 55 syl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndy1stxBaseC
57 56 adantr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCx1stxBaseC
58 xp2nd yBaseC×BaseC2ndyBaseC
59 50 58 syl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndy2ndyBaseC
60 59 adantr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCx2ndyBaseC
61 simplrl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxf1styHomC1stx
62 1st2nd2 xBaseC×BaseCx=1stx2ndx
63 54 62 syl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyx=1stx2ndx
64 63 adantr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxx=1stx2ndx
65 64 oveq1d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxxcompC2ndy=1stx2ndxcompC2ndy
66 65 oveqd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh=g1stx2ndxcompC2ndyh
67 xp2nd xBaseC×BaseC2ndxBaseC
68 54 67 syl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndy2ndxBaseC
69 68 adantr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCx2ndxBaseC
70 63 fveq2d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHomCx=HomC1stx2ndx
71 df-ov 1stxHomC2ndx=HomC1stx2ndx
72 70 71 eqtr4di φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHomCx=1stxHomC2ndx
73 72 eleq2d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxh1stxHomC2ndx
74 73 biimpa φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxh1stxHomC2ndx
75 simplrr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxg2ndxHomC2ndy
76 7 8 9 49 57 69 60 74 75 catcocl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxg1stx2ndxcompC2ndyh1stxHomC2ndy
77 66 76 eqeltrd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1stxHomC2ndy
78 7 8 9 49 53 57 60 61 77 catcocl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf1styHomC2ndy
79 1st2nd2 yBaseC×BaseCy=1sty2ndy
80 50 79 syl φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyy=1sty2ndy
81 80 fveq2d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHomCy=HomC1sty2ndy
82 df-ov 1styHomC2ndy=HomC1sty2ndy
83 81 82 eqtr4di φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHomCy=1styHomC2ndy
84 83 adantr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxHomCy=1styHomC2ndy
85 78 84 eleqtrrd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfHomCy
86 85 fmpttd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf:HomCxHomCy
87 5 ad2antrr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyUV
88 34 7 8 56 68 homfval φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndy1stxHom𝑓C2ndx=1stxHomC2ndx
89 63 fveq2d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓Cx=Hom𝑓C1stx2ndx
90 df-ov 1stxHom𝑓C2ndx=Hom𝑓C1stx2ndx
91 89 90 eqtr4di φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓Cx=1stxHom𝑓C2ndx
92 88 91 72 3eqtr4d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓Cx=HomCx
93 38 ad2antrr φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓C:BaseC×BaseCU
94 93 54 ffvelcdmd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓CxU
95 92 94 eqeltrrd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHomCxU
96 34 7 8 52 59 homfval φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndy1styHom𝑓C2ndy=1styHomC2ndy
97 80 fveq2d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓Cy=Hom𝑓C1sty2ndy
98 df-ov 1styHom𝑓C2ndy=Hom𝑓C1sty2ndy
99 97 98 eqtr4di φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓Cy=1styHom𝑓C2ndy
100 96 99 83 3eqtr4d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓Cy=HomCy
101 93 50 ffvelcdmd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓CyU
102 100 101 eqeltrrd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHomCyU
103 3 87 24 95 102 elsetchom φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfHomCxHomDHomCyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf:HomCxHomCy
104 86 103 mpbird φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfHomCxHomDHomCy
105 92 100 oveq12d φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyHom𝑓CxHomDHom𝑓Cy=HomCxHomDHomCy
106 104 105 eleqtrrd φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfHom𝑓CxHomDHom𝑓Cy
107 106 ralrimivva φxBaseC×BaseCyBaseC×BaseCf1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfHom𝑓CxHomDHom𝑓Cy
108 eqid f1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf=f1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
109 108 fmpo f1styHomC1stxg2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfHom𝑓CxHomDHom𝑓Cyf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf:1styHomC1stx×2ndxHomC2ndyHom𝑓CxHomDHom𝑓Cy
110 107 109 sylib φxBaseC×BaseCyBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf:1styHomC1stx×2ndxHomC2ndyHom𝑓CxHomDHom𝑓Cy
111 16 oveqd φx2ndMy=xxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfy
112 42 ovmpt4g xBaseC×BaseCyBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfVxxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfy=f1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
113 45 112 mp3an3 xBaseC×BaseCyBaseC×BaseCxxBaseC×BaseC,yBaseC×BaseCf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyfy=f1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
114 111 113 sylan9eq φxBaseC×BaseCyBaseC×BaseCx2ndMy=f1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf
115 eqid HomO=HomO
116 simprl φxBaseC×BaseCyBaseC×BaseCxBaseC×BaseC
117 simprr φxBaseC×BaseCyBaseC×BaseCyBaseC×BaseC
118 19 21 115 8 23 116 117 xpchom φxBaseC×BaseCyBaseC×BaseCxHomO×cCy=1stxHomO1sty×2ndxHomC2ndy
119 8 2 oppchom 1stxHomO1sty=1styHomC1stx
120 119 xpeq1i 1stxHomO1sty×2ndxHomC2ndy=1styHomC1stx×2ndxHomC2ndy
121 118 120 eqtrdi φxBaseC×BaseCyBaseC×BaseCxHomO×cCy=1styHomC1stx×2ndxHomC2ndy
122 114 121 feq12d φxBaseC×BaseCyBaseC×BaseCx2ndMy:xHomO×cCyHom𝑓CxHomDHom𝑓Cyf1styHomC1stx,g2ndxHomC2ndyhHomCxgxcompC2ndyh1sty1stxcompC2ndyf:1styHomC1stx×2ndxHomC2ndyHom𝑓CxHomDHom𝑓Cy
123 110 122 mpbird φxBaseC×BaseCyBaseC×BaseCx2ndMy:xHomO×cCyHom𝑓CxHomDHom𝑓Cy
124 eqid IdC=IdC
125 4 ad2antrr φxBaseC×BaseCf1stxHomC2ndxCCat
126 55 adantl φxBaseC×BaseC1stxBaseC
127 126 adantr φxBaseC×BaseCf1stxHomC2ndx1stxBaseC
128 67 adantl φxBaseC×BaseC2ndxBaseC
129 128 adantr φxBaseC×BaseCf1stxHomC2ndx2ndxBaseC
130 simpr φxBaseC×BaseCf1stxHomC2ndxf1stxHomC2ndx
131 7 8 124 125 127 9 129 130 catlid φxBaseC×BaseCf1stxHomC2ndxIdC2ndx1stx2ndxcompC2ndxf=f
132 131 oveq1d φxBaseC×BaseCf1stxHomC2ndxIdC2ndx1stx2ndxcompC2ndxf1stx1stxcompC2ndxIdC1stx=f1stx1stxcompC2ndxIdC1stx
133 7 8 124 125 127 9 129 130 catrid φxBaseC×BaseCf1stxHomC2ndxf1stx1stxcompC2ndxIdC1stx=f
134 132 133 eqtrd φxBaseC×BaseCf1stxHomC2ndxIdC2ndx1stx2ndxcompC2ndxf1stx1stxcompC2ndxIdC1stx=f
135 134 mpteq2dva φxBaseC×BaseCf1stxHomC2ndxIdC2ndx1stx2ndxcompC2ndxf1stx1stxcompC2ndxIdC1stx=f1stxHomC2ndxf
136 df-ov IdC1stx1stx2ndx2ndM1stx2ndxIdC2ndx=1stx2ndx2ndM1stx2ndxIdC1stxIdC2ndx
137 4 adantr φxBaseC×BaseCCCat
138 7 8 124 137 126 catidcl φxBaseC×BaseCIdC1stx1stxHomC1stx
139 7 8 124 137 128 catidcl φxBaseC×BaseCIdC2ndx2ndxHomC2ndx
140 1 137 7 8 126 128 126 128 9 138 139 hof2val φxBaseC×BaseCIdC1stx1stx2ndx2ndM1stx2ndxIdC2ndx=f1stxHomC2ndxIdC2ndx1stx2ndxcompC2ndxf1stx1stxcompC2ndxIdC1stx
141 136 140 eqtr3id φxBaseC×BaseC1stx2ndx2ndM1stx2ndxIdC1stxIdC2ndx=f1stxHomC2ndxIdC2ndx1stx2ndxcompC2ndxf1stx1stxcompC2ndxIdC1stx
142 62 adantl φxBaseC×BaseCx=1stx2ndx
143 142 fveq2d φxBaseC×BaseCHom𝑓Cx=Hom𝑓C1stx2ndx
144 143 90 eqtr4di φxBaseC×BaseCHom𝑓Cx=1stxHom𝑓C2ndx
145 34 7 8 126 128 homfval φxBaseC×BaseC1stxHom𝑓C2ndx=1stxHomC2ndx
146 144 145 eqtrd φxBaseC×BaseCHom𝑓Cx=1stxHomC2ndx
147 146 reseq2d φxBaseC×BaseCIHom𝑓Cx=I1stxHomC2ndx
148 mptresid I1stxHomC2ndx=f1stxHomC2ndxf
149 147 148 eqtrdi φxBaseC×BaseCIHom𝑓Cx=f1stxHomC2ndxf
150 135 141 149 3eqtr4d φxBaseC×BaseC1stx2ndx2ndM1stx2ndxIdC1stxIdC2ndx=IHom𝑓Cx
151 142 142 oveq12d φxBaseC×BaseCx2ndMx=1stx2ndx2ndM1stx2ndx
152 142 fveq2d φxBaseC×BaseCIdO×cCx=IdO×cC1stx2ndx
153 30 adantr φxBaseC×BaseCOCat
154 eqid IdO=IdO
155 19 153 137 20 7 154 124 25 126 128 xpcid φxBaseC×BaseCIdO×cC1stx2ndx=IdO1stxIdC2ndx
156 2 124 oppcid CCatIdO=IdC
157 137 156 syl φxBaseC×BaseCIdO=IdC
158 157 fveq1d φxBaseC×BaseCIdO1stx=IdC1stx
159 158 opeq1d φxBaseC×BaseCIdO1stxIdC2ndx=IdC1stxIdC2ndx
160 152 155 159 3eqtrd φxBaseC×BaseCIdO×cCx=IdC1stxIdC2ndx
161 151 160 fveq12d φxBaseC×BaseCx2ndMxIdO×cCx=1stx2ndx2ndM1stx2ndxIdC1stxIdC2ndx
162 5 adantr φxBaseC×BaseCUV
163 38 ffvelcdmda φxBaseC×BaseCHom𝑓CxU
164 3 26 162 163 setcid φxBaseC×BaseCIdDHom𝑓Cx=IHom𝑓Cx
165 150 161 164 3eqtr4d φxBaseC×BaseCx2ndMxIdO×cCx=IdDHom𝑓Cx
166 4 3ad2ant1 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzCCat
167 5 3ad2ant1 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzUV
168 6 3ad2ant1 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzranHom𝑓CU
169 simp21 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzxBaseC×BaseC
170 169 55 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stxBaseC
171 169 67 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz2ndxBaseC
172 simp22 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzyBaseC×BaseC
173 172 51 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1styBaseC
174 172 58 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz2ndyBaseC
175 simp23 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzzBaseC×BaseC
176 xp1st zBaseC×BaseC1stzBaseC
177 175 176 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stzBaseC
178 xp2nd zBaseC×BaseC2ndzBaseC
179 175 178 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz2ndzBaseC
180 simp3l φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzfxHomO×cCy
181 19 21 115 8 23 169 172 xpchom φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzxHomO×cCy=1stxHomO1sty×2ndxHomC2ndy
182 180 181 eleqtrd φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzf1stxHomO1sty×2ndxHomC2ndy
183 xp1st f1stxHomO1sty×2ndxHomC2ndy1stf1stxHomO1sty
184 182 183 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stf1stxHomO1sty
185 184 119 eleqtrdi φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stf1styHomC1stx
186 xp2nd f1stxHomO1sty×2ndxHomC2ndy2ndf2ndxHomC2ndy
187 182 186 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz2ndf2ndxHomC2ndy
188 simp3r φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzgyHomO×cCz
189 19 21 115 8 23 172 175 xpchom φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzyHomO×cCz=1styHomO1stz×2ndyHomC2ndz
190 188 189 eleqtrd φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzg1styHomO1stz×2ndyHomC2ndz
191 xp1st g1styHomO1stz×2ndyHomC2ndz1stg1styHomO1stz
192 190 191 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stg1styHomO1stz
193 8 2 oppchom 1styHomO1stz=1stzHomC1sty
194 192 193 eleqtrdi φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stg1stzHomC1sty
195 xp2nd g1styHomO1stz×2ndyHomC2ndz2ndg2ndyHomC2ndz
196 190 195 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz2ndg2ndyHomC2ndz
197 1 2 3 166 167 168 7 8 170 171 173 174 177 179 185 187 194 196 hofcllem φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stf1stz1stycompC1stx1stg1stx2ndx2ndM1stz2ndz2ndg2ndx2ndycompC2ndz2ndf=1stg1sty2ndy2ndM1stz2ndz2ndg1stxHomC2ndx1styHomC2ndycompD1stzHomC2ndz1stf1stx2ndx2ndM1sty2ndy2ndf
198 169 62 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx=1stx2ndx
199 1st2nd2 zBaseC×BaseCz=1stz2ndz
200 175 199 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzz=1stz2ndz
201 198 200 oveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMz=1stx2ndx2ndM1stz2ndz
202 172 79 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzy=1sty2ndy
203 198 202 opeq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzxy=1stx2ndx1sty2ndy
204 203 200 oveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzxycompO×cCz=1stx2ndx1sty2ndycompO×cC1stz2ndz
205 1st2nd2 g1styHomO1stz×2ndyHomC2ndzg=1stg2ndg
206 190 205 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzg=1stg2ndg
207 1st2nd2 f1stxHomO1sty×2ndxHomC2ndyf=1stf2ndf
208 182 207 syl φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzf=1stf2ndf
209 204 206 208 oveq123d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzgxycompO×cCzf=1stg2ndg1stx2ndx1sty2ndycompO×cC1stz2ndz1stf2ndf
210 eqid compO=compO
211 19 20 7 115 8 170 171 173 174 210 9 27 177 179 184 187 192 196 xpcco2 φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stg2ndg1stx2ndx1sty2ndycompO×cC1stz2ndz1stf2ndf=1stg1stx1stycompO1stz1stf2ndg2ndx2ndycompC2ndz2ndf
212 7 9 2 170 173 177 oppcco φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stg1stx1stycompO1stz1stf=1stf1stz1stycompC1stx1stg
213 212 opeq1d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stg1stx1stycompO1stz1stf2ndg2ndx2ndycompC2ndz2ndf=1stf1stz1stycompC1stx1stg2ndg2ndx2ndycompC2ndz2ndf
214 209 211 213 3eqtrd φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzgxycompO×cCzf=1stf1stz1stycompC1stx1stg2ndg2ndx2ndycompC2ndz2ndf
215 201 214 fveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMzgxycompO×cCzf=1stx2ndx2ndM1stz2ndz1stf1stz1stycompC1stx1stg2ndg2ndx2ndycompC2ndz2ndf
216 df-ov 1stf1stz1stycompC1stx1stg1stx2ndx2ndM1stz2ndz2ndg2ndx2ndycompC2ndz2ndf=1stx2ndx2ndM1stz2ndz1stf1stz1stycompC1stx1stg2ndg2ndx2ndycompC2ndz2ndf
217 215 216 eqtr4di φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMzgxycompO×cCzf=1stf1stz1stycompC1stx1stg1stx2ndx2ndM1stz2ndz2ndg2ndx2ndycompC2ndz2ndf
218 198 fveq2d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cx=Hom𝑓C1stx2ndx
219 218 90 eqtr4di φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cx=1stxHom𝑓C2ndx
220 34 7 8 170 171 homfval φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stxHom𝑓C2ndx=1stxHomC2ndx
221 219 220 eqtrd φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cx=1stxHomC2ndx
222 202 fveq2d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cy=Hom𝑓C1sty2ndy
223 222 98 eqtr4di φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cy=1styHom𝑓C2ndy
224 34 7 8 173 174 homfval φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1styHom𝑓C2ndy=1styHomC2ndy
225 223 224 eqtrd φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cy=1styHomC2ndy
226 221 225 opeq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓CxHom𝑓Cy=1stxHomC2ndx1styHomC2ndy
227 200 fveq2d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cz=Hom𝑓C1stz2ndz
228 df-ov 1stzHom𝑓C2ndz=Hom𝑓C1stz2ndz
229 227 228 eqtr4di φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cz=1stzHom𝑓C2ndz
230 34 7 8 177 179 homfval φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCz1stzHom𝑓C2ndz=1stzHomC2ndz
231 229 230 eqtrd φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓Cz=1stzHomC2ndz
232 226 231 oveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzHom𝑓CxHom𝑓CycompDHom𝑓Cz=1stxHomC2ndx1styHomC2ndycompD1stzHomC2ndz
233 202 200 oveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzy2ndMz=1sty2ndy2ndM1stz2ndz
234 233 206 fveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzy2ndMzg=1sty2ndy2ndM1stz2ndz1stg2ndg
235 df-ov 1stg1sty2ndy2ndM1stz2ndz2ndg=1sty2ndy2ndM1stz2ndz1stg2ndg
236 234 235 eqtr4di φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzy2ndMzg=1stg1sty2ndy2ndM1stz2ndz2ndg
237 198 202 oveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMy=1stx2ndx2ndM1sty2ndy
238 237 208 fveq12d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMyf=1stx2ndx2ndM1sty2ndy1stf2ndf
239 df-ov 1stf1stx2ndx2ndM1sty2ndy2ndf=1stx2ndx2ndM1sty2ndy1stf2ndf
240 238 239 eqtr4di φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMyf=1stf1stx2ndx2ndM1sty2ndy2ndf
241 232 236 240 oveq123d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzy2ndMzgHom𝑓CxHom𝑓CycompDHom𝑓Czx2ndMyf=1stg1sty2ndy2ndM1stz2ndz2ndg1stxHomC2ndx1styHomC2ndycompD1stzHomC2ndz1stf1stx2ndx2ndM1sty2ndy2ndf
242 197 217 241 3eqtr4d φxBaseC×BaseCyBaseC×BaseCzBaseC×BaseCfxHomO×cCygyHomO×cCzx2ndMzgxycompO×cCzf=y2ndMzgHom𝑓CxHom𝑓CycompDHom𝑓Czx2ndMyf
243 21 22 23 24 25 26 27 28 31 33 41 48 123 165 242 isfuncd φHom𝑓CO×cCFuncD2ndM
244 df-br Hom𝑓CO×cCFuncD2ndMHom𝑓C2ndMO×cCFuncD
245 243 244 sylib φHom𝑓C2ndMO×cCFuncD
246 18 245 eqeltrd φMO×cCFuncD