Metamath Proof Explorer


Theorem htthlem

Description: Lemma for htth . The collection K , which consists of functions F ( z ) ( w ) = <. w | T ( z ) >. = <. T ( w ) | z >. for each z in the unit ball, is a collection of bounded linear functions by ipblnfi , so by the Uniform Boundedness theorem ubth , there is a uniform bound y on || F ( x ) || for all x in the unit ball. Then | T ( x ) | ^ 2 = <. T ( x ) | T ( x ) >. = F ( x ) ( T ( x ) ) <_ y | T ( x ) | , so | T ( x ) | <_ y and T is bounded. (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses htth.1 X=BaseSetU
htth.2 P=𝑖OLDU
htth.3 L=ULnOpU
htth.4 B=UBLnOpU
htthlem.5 N=normCVU
htthlem.6 UCHilOLD
htthlem.7 W=+×abs
htthlem.8 φTL
htthlem.9 φxXyXxPTy=TxPy
htthlem.10 F=zXwXwPTz
htthlem.11 K=FzX|Nz1
Assertion htthlem φTB

Proof

Step Hyp Ref Expression
1 htth.1 X=BaseSetU
2 htth.2 P=𝑖OLDU
3 htth.3 L=ULnOpU
4 htth.4 B=UBLnOpU
5 htthlem.5 N=normCVU
6 htthlem.6 UCHilOLD
7 htthlem.7 W=+×abs
8 htthlem.8 φTL
9 htthlem.9 φxXyXxPTy=TxPy
10 htthlem.10 F=zXwXwPTz
11 htthlem.11 K=FzX|Nz1
12 6 hlnvi UNrmCVec
13 1 1 3 lnof UNrmCVecUNrmCVecTLT:XX
14 12 12 13 mp3an12 TLT:XX
15 8 14 syl φT:XX
16 15 ffvelcdmda φxXTxX
17 1 5 nvcl UNrmCVecTxXNTx
18 12 16 17 sylancr φxXNTx
19 15 ffvelcdmda φzXTzX
20 hlph UCHilOLDUCPreHilOLD
21 6 20 ax-mp UCPreHilOLD
22 eqid UBLnOpW=UBLnOpW
23 eqid wXwPTz=wXwPTz
24 1 2 21 7 22 23 ipblnfi TzXwXwPTzUBLnOpW
25 19 24 syl φzXwXwPTzUBLnOpW
26 25 10 fmptd φF:XUBLnOpW
27 26 ffund φFunF
28 27 adantr φxXFunF
29 id wKwK
30 29 11 eleqtrdi wKwFzX|Nz1
31 fvelima FunFwFzX|Nz1yzX|Nz1Fy=w
32 28 30 31 syl2an φxXwKyzX|Nz1Fy=w
33 32 ex φxXwKyzX|Nz1Fy=w
34 fveq2 z=yNz=Ny
35 34 breq1d z=yNz1Ny1
36 35 elrab yzX|Nz1yXNy1
37 fveq2 z=yTz=Ty
38 37 oveq2d z=ywPTz=wPTy
39 38 mpteq2dv z=ywXwPTz=wXwPTy
40 39 10 1 mptfvmpt yXFy=wXwPTy
41 40 fveq1d yXFyx=wXwPTyx
42 oveq1 w=xwPTy=xPTy
43 eqid wXwPTy=wXwPTy
44 ovex xPTyV
45 42 43 44 fvmpt xXwXwPTyx=xPTy
46 41 45 sylan9eqr xXyXFyx=xPTy
47 46 ad2ant2lr φxXyXNy1Fyx=xPTy
48 rsp2 xXyXxPTy=TxPyxXyXxPTy=TxPy
49 9 48 syl φxXyXxPTy=TxPy
50 49 impl φxXyXxPTy=TxPy
51 50 adantrr φxXyXNy1xPTy=TxPy
52 47 51 eqtrd φxXyXNy1Fyx=TxPy
53 52 fveq2d φxXyXNy1Fyx=TxPy
54 simpl yXNy1yX
55 1 2 dipcl UNrmCVecTxXyXTxPy
56 12 55 mp3an1 TxXyXTxPy
57 16 54 56 syl2an φxXyXNy1TxPy
58 57 abscld φxXyXNy1TxPy
59 18 adantr φxXyXNy1NTx
60 1 5 nvcl UNrmCVecyXNy
61 12 60 mpan yXNy
62 61 ad2antrl φxXyXNy1Ny
63 59 62 remulcld φxXyXNy1NTxNy
64 1 5 2 21 sii TxXyXTxPyNTxNy
65 16 54 64 syl2an φxXyXNy1TxPyNTxNy
66 1red φxXyXNy11
67 1 5 nvge0 UNrmCVecTxX0NTx
68 12 16 67 sylancr φxX0NTx
69 18 68 jca φxXNTx0NTx
70 69 adantr φxXyXNy1NTx0NTx
71 simprr φxXyXNy1Ny1
72 lemul2a Ny1NTx0NTxNy1NTxNyNTx1
73 62 66 70 71 72 syl31anc φxXyXNy1NTxNyNTx1
74 59 recnd φxXyXNy1NTx
75 74 mulridd φxXyXNy1NTx1=NTx
76 73 75 breqtrd φxXyXNy1NTxNyNTx
77 58 63 59 65 76 letrd φxXyXNy1TxPyNTx
78 53 77 eqbrtrd φxXyXNy1FyxNTx
79 36 78 sylan2b φxXyzX|Nz1FyxNTx
80 fveq1 Fy=wFyx=wx
81 80 fveq2d Fy=wFyx=wx
82 81 breq1d Fy=wFyxNTxwxNTx
83 79 82 syl5ibcom φxXyzX|Nz1Fy=wwxNTx
84 83 rexlimdva φxXyzX|Nz1Fy=wwxNTx
85 33 84 syld φxXwKwxNTx
86 85 ralrimiv φxXwKwxNTx
87 brralrspcev NTxwKwxNTxzwKwxz
88 18 86 87 syl2anc φxXzwKwxz
89 88 ralrimiva φxXzwKwxz
90 imassrn FzX|Nz1ranF
91 11 90 eqsstri KranF
92 26 frnd φranFUBLnOpW
93 91 92 sstrid φKUBLnOpW
94 hlobn UCHilOLDUCBan
95 6 94 ax-mp UCBan
96 7 cnnv WNrmCVec
97 7 cnnvnm abs=normCVW
98 eqid UnormOpOLDW=UnormOpOLDW
99 1 97 98 ubth UCBanWNrmCVecKUBLnOpWxXzwKwxzywKUnormOpOLDWwy
100 95 96 99 mp3an12 KUBLnOpWxXzwKwxzywKUnormOpOLDWwy
101 93 100 syl φxXzwKwxzywKUnormOpOLDWwy
102 89 101 mpbid φywKUnormOpOLDWwy
103 simpr φyxXNx1xXNx1
104 fveq2 z=xNz=Nx
105 104 breq1d z=xNz1Nx1
106 105 elrab xzX|Nz1xXNx1
107 103 106 sylibr φyxXNx1xzX|Nz1
108 10 25 dmmptd φdomF=X
109 108 eleq2d φxdomFxX
110 109 biimpar φxXxdomF
111 funfvima FunFxdomFxzX|Nz1FxFzX|Nz1
112 27 111 sylan φxdomFxzX|Nz1FxFzX|Nz1
113 110 112 syldan φxXxzX|Nz1FxFzX|Nz1
114 113 ad2ant2r φyxXNx1xzX|Nz1FxFzX|Nz1
115 107 114 mpd φyxXNx1FxFzX|Nz1
116 115 11 eleqtrrdi φyxXNx1FxK
117 fveq2 w=FxUnormOpOLDWw=UnormOpOLDWFx
118 117 breq1d w=FxUnormOpOLDWwyUnormOpOLDWFxy
119 118 rspcv FxKwKUnormOpOLDWwyUnormOpOLDWFxy
120 116 119 syl φyxXNx1wKUnormOpOLDWwyUnormOpOLDWFxy
121 18 ad2ant2r φyxXUnormOpOLDWFxyNTx
122 121 121 remulcld φyxXUnormOpOLDWFxyNTxNTx
123 26 ffvelcdmda φxXFxUBLnOpW
124 7 cnnvba =BaseSetW
125 1 124 98 22 nmblore UNrmCVecWNrmCVecFxUBLnOpWUnormOpOLDWFx
126 12 96 125 mp3an12 FxUBLnOpWUnormOpOLDWFx
127 123 126 syl φxXUnormOpOLDWFx
128 127 ad2ant2r φyxXUnormOpOLDWFxyUnormOpOLDWFx
129 128 121 remulcld φyxXUnormOpOLDWFxyUnormOpOLDWFxNTx
130 simplr φyxXUnormOpOLDWFxyy
131 130 121 remulcld φyxXUnormOpOLDWFxyyNTx
132 fveq2 z=xTz=Tx
133 132 oveq2d z=xwPTz=wPTx
134 133 mpteq2dv z=xwXwPTz=wXwPTx
135 134 10 1 mptfvmpt xXFx=wXwPTx
136 135 adantl φxXFx=wXwPTx
137 136 fveq1d φxXFxTx=wXwPTxTx
138 oveq1 w=TxwPTx=TxPTx
139 eqid wXwPTx=wXwPTx
140 ovex TxPTxV
141 138 139 140 fvmpt TxXwXwPTxTx=TxPTx
142 16 141 syl φxXwXwPTxTx=TxPTx
143 137 142 eqtrd φxXFxTx=TxPTx
144 143 ad2ant2r φyxXUnormOpOLDWFxyFxTx=TxPTx
145 16 ad2ant2r φyxXUnormOpOLDWFxyTxX
146 1 5 2 ipidsq UNrmCVecTxXTxPTx=NTx2
147 12 145 146 sylancr φyxXUnormOpOLDWFxyTxPTx=NTx2
148 144 147 eqtrd φyxXUnormOpOLDWFxyFxTx=NTx2
149 148 fveq2d φyxXUnormOpOLDWFxyFxTx=NTx2
150 resqcl NTxNTx2
151 sqge0 NTx0NTx2
152 150 151 absidd NTxNTx2=NTx2
153 121 152 syl φyxXUnormOpOLDWFxyNTx2=NTx2
154 121 recnd φyxXUnormOpOLDWFxyNTx
155 154 sqvald φyxXUnormOpOLDWFxyNTx2=NTxNTx
156 149 153 155 3eqtrd φyxXUnormOpOLDWFxyFxTx=NTxNTx
157 123 ad2ant2r φyxXUnormOpOLDWFxyFxUBLnOpW
158 1 5 97 98 22 12 96 nmblolbi FxUBLnOpWTxXFxTxUnormOpOLDWFxNTx
159 157 145 158 syl2anc φyxXUnormOpOLDWFxyFxTxUnormOpOLDWFxNTx
160 156 159 eqbrtrrd φyxXUnormOpOLDWFxyNTxNTxUnormOpOLDWFxNTx
161 12 145 67 sylancr φyxXUnormOpOLDWFxy0NTx
162 simprr φyxXUnormOpOLDWFxyUnormOpOLDWFxy
163 128 130 121 161 162 lemul1ad φyxXUnormOpOLDWFxyUnormOpOLDWFxNTxyNTx
164 122 129 131 160 163 letrd φyxXUnormOpOLDWFxyNTxNTxyNTx
165 lemul1 NTxyNTx0<NTxNTxyNTxNTxyNTx
166 165 biimprd NTxyNTx0<NTxNTxNTxyNTxNTxy
167 166 3expia NTxyNTx0<NTxNTxNTxyNTxNTxy
168 167 expdimp NTxyNTx0<NTxNTxNTxyNTxNTxy
169 121 130 121 168 syl21anc φyxXUnormOpOLDWFxy0<NTxNTxNTxyNTxNTxy
170 164 169 mpid φyxXUnormOpOLDWFxy0<NTxNTxy
171 0red φyxXUnormOpOLDWFxy0
172 1 124 22 blof UNrmCVecWNrmCVecFxUBLnOpWFx:X
173 12 96 172 mp3an12 FxUBLnOpWFx:X
174 123 173 syl φxXFx:X
175 174 ad2ant2r φyxXUnormOpOLDWFxyFx:X
176 1 124 98 nmooge0 UNrmCVecWNrmCVecFx:X0UnormOpOLDWFx
177 12 96 176 mp3an12 Fx:X0UnormOpOLDWFx
178 175 177 syl φyxXUnormOpOLDWFxy0UnormOpOLDWFx
179 171 128 130 178 162 letrd φyxXUnormOpOLDWFxy0y
180 breq1 0=NTx0yNTxy
181 179 180 syl5ibcom φyxXUnormOpOLDWFxy0=NTxNTxy
182 0re 0
183 leloe 0NTx0NTx0<NTx0=NTx
184 182 121 183 sylancr φyxXUnormOpOLDWFxy0NTx0<NTx0=NTx
185 161 184 mpbid φyxXUnormOpOLDWFxy0<NTx0=NTx
186 170 181 185 mpjaod φyxXUnormOpOLDWFxyNTxy
187 186 expr φyxXUnormOpOLDWFxyNTxy
188 187 adantrr φyxXNx1UnormOpOLDWFxyNTxy
189 120 188 syld φyxXNx1wKUnormOpOLDWwyNTxy
190 189 expr φyxXNx1wKUnormOpOLDWwyNTxy
191 190 com23 φyxXwKUnormOpOLDWwyNx1NTxy
192 191 ralrimdva φywKUnormOpOLDWwyxXNx1NTxy
193 192 reximdva φywKUnormOpOLDWwyyxXNx1NTxy
194 102 193 mpd φyxXNx1NTxy
195 eqid UnormOpOLDU=UnormOpOLDU
196 1 1 5 5 195 12 12 nmobndi T:XXUnormOpOLDUTyxXNx1NTxy
197 15 196 syl φUnormOpOLDUTyxXNx1NTxy
198 194 197 mpbird φUnormOpOLDUT
199 ltpnf UnormOpOLDUTUnormOpOLDUT<+∞
200 198 199 syl φUnormOpOLDUT<+∞
201 195 3 4 isblo UNrmCVecUNrmCVecTBTLUnormOpOLDUT<+∞
202 12 12 201 mp2an TBTLUnormOpOLDUT<+∞
203 8 200 202 sylanbrc φTB