Metamath Proof Explorer


Theorem isomenndlem

Description: O is sub-additive w.r.t. countable indexed union, implies that O is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of Fremlin1 p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses isomenndlem.o φO:𝒫X0+∞
isomenndlem.o0 φO=0
isomenndlem.y φY𝒫X
isomenndlem.subadd φa:𝒫XOnansum^nOan
isomenndlem.b φB
isomenndlem.f φF:B1-1 ontoY
isomenndlem.a A=nifnBFn
Assertion isomenndlem φOYsum^OY

Proof

Step Hyp Ref Expression
1 isomenndlem.o φO:𝒫X0+∞
2 isomenndlem.o0 φO=0
3 isomenndlem.y φY𝒫X
4 isomenndlem.subadd φa:𝒫XOnansum^nOan
5 isomenndlem.b φB
6 isomenndlem.f φF:B1-1 ontoY
7 isomenndlem.a A=nifnBFn
8 id φφ
9 iftrue nBifnBFn=Fn
10 9 adantl φnBifnBFn=Fn
11 f1of F:B1-1 ontoYF:BY
12 6 11 syl φF:BY
13 ssun1 YY
14 13 a1i φYY
15 12 14 fssd φF:BY
16 15 ffvelcdmda φnBFnY
17 10 16 eqeltrd φnBifnBFnY
18 17 adantlr φnnBifnBFnY
19 iffalse ¬nBifnBFn=
20 19 adantl φ¬nBifnBFn=
21 0ex V
22 21 snid
23 elun2 Y
24 22 23 ax-mp Y
25 24 a1i φ¬nBY
26 20 25 eqeltrd φ¬nBifnBFnY
27 26 adantlr φn¬nBifnBFnY
28 18 27 pm2.61dan φnifnBFnY
29 28 7 fmptd φA:Y
30 0elpw 𝒫X
31 snssi 𝒫X𝒫X
32 30 31 ax-mp 𝒫X
33 32 a1i φ𝒫X
34 3 33 unssd φY𝒫X
35 29 34 fssd φA:𝒫X
36 nnex V
37 36 mptex nifnBFnV
38 7 37 eqeltri AV
39 feq1 a=Aa:𝒫XA:𝒫X
40 39 anbi2d a=Aφa:𝒫XφA:𝒫X
41 fveq1 a=Aan=An
42 41 iuneq2d a=Anan=nAn
43 42 fveq2d a=AOnan=OnAn
44 simpl a=Ana=A
45 44 fveq1d a=Anan=An
46 45 fveq2d a=AnOan=OAn
47 46 mpteq2dva a=AnOan=nOAn
48 47 fveq2d a=Asum^nOan=sum^nOAn
49 43 48 breq12d a=AOnansum^nOanOnAnsum^nOAn
50 40 49 imbi12d a=Aφa:𝒫XOnansum^nOanφA:𝒫XOnAnsum^nOAn
51 38 50 4 vtocl φA:𝒫XOnAnsum^nOAn
52 8 35 51 syl2anc φOnAnsum^nOAn
53 12 ad2antrr φB=nF:BY
54 simpr B=nn
55 id B=B=
56 55 eqcomd B==B
57 56 adantr B=n=B
58 54 57 eleqtrd B=nnB
59 58 adantll φB=nnB
60 53 59 ffvelcdmd φB=nFnY
61 eqid nFn=nFn
62 60 61 fmptd φB=nFn:Y
63 7 a1i B=A=nifnBFn
64 58 iftrued B=nifnBFn=Fn
65 64 mpteq2dva B=nifnBFn=nFn
66 63 65 eqtrd B=A=nFn
67 66 feq1d B=A:YnFn:Y
68 67 adantl φB=A:YnFn:Y
69 62 68 mpbird φB=A:Y
70 f1ofo F:B1-1 ontoYF:BontoY
71 6 70 syl φF:BontoY
72 dffo3 F:BontoYF:BYyYnBy=Fn
73 71 72 sylib φF:BYyYnBy=Fn
74 73 simprd φyYnBy=Fn
75 74 adantr φyYyYnBy=Fn
76 simpr φyYyY
77 rspa yYnBy=FnyYnBy=Fn
78 75 76 77 syl2anc φyYnBy=Fn
79 78 adantlr φB=yYnBy=Fn
80 nfv nφB=
81 nfre1 nny=An
82 simpr B=nBnB
83 simpl B=nBB=
84 82 83 eleqtrd B=nBn
85 84 adantll φB=nBn
86 85 3adant3 φB=nBy=Fnn
87 63 fveq1d B=An=nifnBFnn
88 87 3ad2ant1 B=nBy=FnAn=nifnBFnn
89 fvex FnV
90 89 21 ifex ifnBFnV
91 90 a1i B=nBifnBFnV
92 eqid nifnBFn=nifnBFn
93 92 fvmpt2 nifnBFnVnifnBFnn=ifnBFn
94 84 91 93 syl2anc B=nBnifnBFnn=ifnBFn
95 9 adantl B=nBifnBFn=Fn
96 94 95 eqtrd B=nBnifnBFnn=Fn
97 96 3adant3 B=nBy=FnnifnBFnn=Fn
98 id y=Fny=Fn
99 98 eqcomd y=FnFn=y
100 99 3ad2ant3 B=nBy=FnFn=y
101 88 97 100 3eqtrrd B=nBy=Fny=An
102 101 3adant1l φB=nBy=Fny=An
103 rspe ny=Anny=An
104 86 102 103 syl2anc φB=nBy=Fnny=An
105 104 3exp φB=nBy=Fnny=An
106 80 81 105 rexlimd φB=nBy=Fnny=An
107 106 adantr φB=yYnBy=Fnny=An
108 79 107 mpd φB=yYny=An
109 108 ralrimiva φB=yYny=An
110 69 109 jca φB=A:YyYny=An
111 dffo3 A:ontoYA:YyYny=An
112 110 111 sylibr φB=A:ontoY
113 founiiun A:ontoYY=nAn
114 112 113 syl φB=Y=nAn
115 uniun Y=Y
116 21 unisn =
117 116 uneq2i Y=Y
118 un0 Y=Y
119 115 117 118 3eqtrri Y=Y
120 119 a1i φ¬B=Y=Y
121 29 adantr φ¬B=A:Y
122 nfv nφ¬B=y=
123 5 adantr φ¬B=B
124 55 necon3bi ¬B=B
125 124 adantl φ¬B=B
126 123 125 jca φ¬B=BB
127 df-pss BBB
128 126 127 sylibr φ¬B=B
129 pssnel Bnn¬nB
130 128 129 syl φ¬B=nn¬nB
131 130 adantr φ¬B=y=nn¬nB
132 simprl φy=n¬nBn
133 simprl φn¬nBn
134 90 a1i φn¬nBifnBFnV
135 7 fvmpt2 nifnBFnVAn=ifnBFn
136 133 134 135 syl2anc φn¬nBAn=ifnBFn
137 136 adantlr φy=n¬nBAn=ifnBFn
138 19 ad2antll φy=n¬nBifnBFn=
139 id y=y=
140 139 eqcomd y==y
141 140 ad2antlr φy=n¬nB=y
142 137 138 141 3eqtrrd φy=n¬nBy=An
143 132 142 103 syl2anc φy=n¬nBny=An
144 143 ex φy=n¬nBny=An
145 144 adantlr φ¬B=y=n¬nBny=An
146 122 81 131 145 exlimimdd φ¬B=y=ny=An
147 146 adantlr φ¬B=yYy=ny=An
148 simplll φ¬B=yY¬y=φ
149 simpl yY¬y=yY
150 elsni yy=
151 150 con3i ¬y=¬y
152 151 adantl yY¬y=¬y
153 elunnel2 yY¬yyY
154 149 152 153 syl2anc yY¬y=yY
155 154 adantll φ¬B=yY¬y=yY
156 71 adantr φyYF:BontoY
157 foelcdmi F:BontoYyYnBFn=y
158 156 76 157 syl2anc φyYnBFn=y
159 nfv nφyY
160 5 sselda φnBn
161 160 3adant3 φnBFn=yn
162 160 90 135 sylancl φnBAn=ifnBFn
163 162 10 eqtrd φnBAn=Fn
164 163 3adant3 φnBFn=yAn=Fn
165 simp3 φnBFn=yFn=y
166 164 165 eqtr2d φnBFn=yy=An
167 161 166 103 syl2anc φnBFn=yny=An
168 167 3exp φnBFn=yny=An
169 168 adantr φyYnBFn=yny=An
170 159 81 169 rexlimd φyYnBFn=yny=An
171 158 170 mpd φyYny=An
172 148 155 171 syl2anc φ¬B=yY¬y=ny=An
173 147 172 pm2.61dan φ¬B=yYny=An
174 173 ralrimiva φ¬B=yYny=An
175 121 174 jca φ¬B=A:YyYny=An
176 dffo3 A:ontoYA:YyYny=An
177 175 176 sylibr φ¬B=A:ontoY
178 founiiun A:ontoYY=nAn
179 177 178 syl φ¬B=Y=nAn
180 120 179 eqtrd φ¬B=Y=nAn
181 114 180 pm2.61dan φY=nAn
182 181 fveq2d φOY=OnAn
183 uncom BB=BB
184 183 a1i φBB=BB
185 undif BBB=
186 5 185 sylib φBB=
187 184 186 eqtrd φBB=
188 187 eqcomd φ=BB
189 188 mpteq1d φnOAn=nBBOAn
190 189 fveq2d φsum^nOAn=sum^nBBOAn
191 nfv nφ
192 difexg VBV
193 36 192 ax-mp BV
194 193 a1i φBV
195 36 a1i φV
196 195 5 ssexd φBV
197 disjdifr BB=
198 197 a1i φBB=
199 simpl φnBφ
200 eldifi nBn
201 200 adantl φnBn
202 1 adantr φnO:𝒫X0+∞
203 35 ffvelcdmda φnAn𝒫X
204 202 203 ffvelcdmd φnOAn0+∞
205 199 201 204 syl2anc φnBOAn0+∞
206 160 204 syldan φnBOAn0+∞
207 191 194 196 198 205 206 sge0splitmpt φsum^nBBOAn=sum^nBOAn+𝑒sum^nBOAn
208 eqid nBOAn=nBOAn
209 206 208 fmptd φnBOAn:B0+∞
210 196 209 sge0xrcl φsum^nBOAn*
211 210 xaddlidd φ0+𝑒sum^nBOAn=sum^nBOAn
212 90 a1i φnBifnBFnV
213 201 212 135 syl2anc φnBAn=ifnBFn
214 eldifn nB¬nB
215 214 adantl φnB¬nB
216 215 iffalsed φnBifnBFn=
217 213 216 eqtrd φnBAn=
218 217 fveq2d φnBOAn=O
219 199 2 syl φnBO=0
220 218 219 eqtrd φnBOAn=0
221 220 mpteq2dva φnBOAn=nB0
222 221 fveq2d φsum^nBOAn=sum^nB0
223 191 194 sge0z φsum^nB0=0
224 222 223 eqtrd φsum^nBOAn=0
225 224 oveq1d φsum^nBOAn+𝑒sum^nBOAn=0+𝑒sum^nBOAn
226 1 3 feqresmpt φOY=yYOy
227 226 fveq2d φsum^OY=sum^yYOy
228 nfv yφ
229 fveq2 y=AnOy=OAn
230 163 eqcomd φnBFn=An
231 1 adantr φyYO:𝒫X0+∞
232 3 sselda φyYy𝒫X
233 231 232 ffvelcdmd φyYOy0+∞
234 228 191 229 196 6 230 233 sge0f1o φsum^yYOy=sum^nBOAn
235 eqidd φsum^nBOAn=sum^nBOAn
236 227 234 235 3eqtrd φsum^OY=sum^nBOAn
237 211 225 236 3eqtr4d φsum^nBOAn+𝑒sum^nBOAn=sum^OY
238 190 207 237 3eqtrrd φsum^OY=sum^nOAn
239 182 238 breq12d φOYsum^OYOnAnsum^nOAn
240 52 239 mpbird φOYsum^OY