Metamath Proof Explorer


Theorem ivthlem2

Description: Lemma for ivth . Show that the supremum of S cannot be less than U . If it was, continuity of F implies that there are points just above the supremum that are also less than U , a contradiction. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivth.9 φFA<UU<FB
ivth.10 S=xAB|FxU
ivth.11 C=supS<
Assertion ivthlem2 φ¬FC<U

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivth.9 φFA<UU<FB
9 ivth.10 S=xAB|FxU
10 ivth.11 C=supS<
11 6 adantr φFC<UF:Dcn
12 9 ssrab3 SAB
13 iccssre ABAB
14 1 2 13 syl2anc φAB
15 12 14 sstrid φS
16 1 2 3 4 5 6 7 8 9 ivthlem1 φASzSzB
17 16 simpld φAS
18 17 ne0d φS
19 16 simprd φzSzB
20 brralrspcev BzSzBxzSzx
21 2 19 20 syl2anc φxzSzx
22 15 18 21 suprcld φsupS<
23 10 22 eqeltrid φC
24 15 18 21 17 suprubd φAsupS<
25 24 10 breqtrrdi φAC
26 15 18 21 3jca φSSxzSzx
27 suprleub SSxzSzxBsupS<BzSzB
28 26 2 27 syl2anc φsupS<BzSzB
29 19 28 mpbird φsupS<B
30 10 29 eqbrtrid φCB
31 elicc2 ABCABCACCB
32 1 2 31 syl2anc φCABCACCB
33 23 25 30 32 mpbir3and φCAB
34 5 33 sseldd φCD
35 34 adantr φFC<UCD
36 fveq2 x=CFx=FC
37 36 eleq1d x=CFxFC
38 7 ralrimiva φxABFx
39 37 38 33 rspcdva φFC
40 difrp FCUFC<UUFC+
41 39 3 40 syl2anc φFC<UUFC+
42 41 biimpa φFC<UUFC+
43 cncfi F:DcnCDUFC+z+yDyC<zFyFC<UFC
44 11 35 42 43 syl3anc φFC<Uz+yDyC<zFyFC<UFC
45 ssralv ABDyDyC<zFyFC<UFCyAByC<zFyFC<UFC
46 5 45 syl φyDyC<zFyFC<UFCyAByC<zFyFC<UFC
47 46 ad2antrr φFC<Uz+yDyC<zFyFC<UFCyAByC<zFyFC<UFC
48 2 ad2antrr φFC<Uz+B
49 23 ad2antrr φFC<Uz+C
50 rphalfcl z+z2+
51 50 adantl φFC<Uz+z2+
52 51 rpred φFC<Uz+z2
53 49 52 readdcld φFC<Uz+C+z2
54 48 53 ifcld φFC<Uz+ifBC+z2BC+z2
55 1 ad2antrr φFC<Uz+A
56 25 ad2antrr φFC<Uz+AC
57 8 simprd φU<FB
58 fveq2 x=BFx=FB
59 58 eleq1d x=BFxFB
60 1 rexrd φA*
61 2 rexrd φB*
62 1 2 4 ltled φAB
63 ubicc2 A*B*ABBAB
64 60 61 62 63 syl3anc φBAB
65 59 38 64 rspcdva φFB
66 lttr FCUFBFC<UU<FBFC<FB
67 39 3 65 66 syl3anc φFC<UU<FBFC<FB
68 57 67 mpan2d φFC<UFC<FB
69 68 imp φFC<UFC<FB
70 69 adantr φFC<Uz+FC<FB
71 39 ltnrd φ¬FC<FC
72 fveq2 B=CFB=FC
73 72 breq2d B=CFC<FBFC<FC
74 73 notbid B=C¬FC<FB¬FC<FC
75 71 74 syl5ibrcom φB=C¬FC<FB
76 75 necon2ad φFC<FBBC
77 76 30 jctild φFC<FBCBBC
78 23 2 ltlend φC<BCBBC
79 77 78 sylibrd φFC<FBC<B
80 79 ad2antrr φFC<Uz+FC<FBC<B
81 70 80 mpd φFC<Uz+C<B
82 49 51 ltaddrpd φFC<Uz+C<C+z2
83 breq2 B=ifBC+z2BC+z2C<BC<ifBC+z2BC+z2
84 breq2 C+z2=ifBC+z2BC+z2C<C+z2C<ifBC+z2BC+z2
85 83 84 ifboth C<BC<C+z2C<ifBC+z2BC+z2
86 81 82 85 syl2anc φFC<Uz+C<ifBC+z2BC+z2
87 49 54 86 ltled φFC<Uz+CifBC+z2BC+z2
88 55 49 54 56 87 letrd φFC<Uz+AifBC+z2BC+z2
89 min1 BC+z2ifBC+z2BC+z2B
90 48 53 89 syl2anc φFC<Uz+ifBC+z2BC+z2B
91 elicc2 ABifBC+z2BC+z2ABifBC+z2BC+z2AifBC+z2BC+z2ifBC+z2BC+z2B
92 1 2 91 syl2anc φifBC+z2BC+z2ABifBC+z2BC+z2AifBC+z2BC+z2ifBC+z2BC+z2B
93 92 ad2antrr φFC<Uz+ifBC+z2BC+z2ABifBC+z2BC+z2AifBC+z2BC+z2ifBC+z2BC+z2B
94 54 88 90 93 mpbir3and φFC<Uz+ifBC+z2BC+z2AB
95 49 54 87 abssubge0d φFC<Uz+ifBC+z2BC+z2C=ifBC+z2BC+z2C
96 rpre z+z
97 96 adantl φFC<Uz+z
98 49 97 readdcld φFC<Uz+C+z
99 min2 BC+z2ifBC+z2BC+z2C+z2
100 48 53 99 syl2anc φFC<Uz+ifBC+z2BC+z2C+z2
101 rphalflt z+z2<z
102 101 adantl φFC<Uz+z2<z
103 52 97 49 102 ltadd2dd φFC<Uz+C+z2<C+z
104 54 53 98 100 103 lelttrd φFC<Uz+ifBC+z2BC+z2<C+z
105 54 49 97 ltsubadd2d φFC<Uz+ifBC+z2BC+z2C<zifBC+z2BC+z2<C+z
106 104 105 mpbird φFC<Uz+ifBC+z2BC+z2C<z
107 95 106 eqbrtrd φFC<Uz+ifBC+z2BC+z2C<z
108 fvoveq1 y=ifBC+z2BC+z2yC=ifBC+z2BC+z2C
109 108 breq1d y=ifBC+z2BC+z2yC<zifBC+z2BC+z2C<z
110 breq2 y=ifBC+z2BC+z2C<yC<ifBC+z2BC+z2
111 109 110 anbi12d y=ifBC+z2BC+z2yC<zC<yifBC+z2BC+z2C<zC<ifBC+z2BC+z2
112 111 rspcev ifBC+z2BC+z2ABifBC+z2BC+z2C<zC<ifBC+z2BC+z2yAByC<zC<y
113 94 107 86 112 syl12anc φFC<Uz+yAByC<zC<y
114 r19.29 yAByC<zFyFC<UFCyAByC<zC<yyAByC<zFyFC<UFCyC<zC<y
115 pm3.45 yC<zFyFC<UFCyC<zC<yFyFC<UFCC<y
116 115 imp yC<zFyFC<UFCyC<zC<yFyFC<UFCC<y
117 simprr φFC<Uz+yABC<yC<y
118 fveq2 x=yFx=Fy
119 118 eleq1d x=yFxFy
120 simplll φFC<Uz+yABC<yφ
121 120 38 syl φFC<Uz+yABC<yxABFx
122 simprl φFC<Uz+yABC<yyAB
123 119 121 122 rspcdva φFC<Uz+yABC<yFy
124 120 39 syl φFC<Uz+yABC<yFC
125 120 3 syl φFC<Uz+yABC<yU
126 125 124 resubcld φFC<Uz+yABC<yUFC
127 123 124 126 absdifltd φFC<Uz+yABC<yFyFC<UFCFCUFC<FyFy<FC+U-FC
128 ltle FyUFy<UFyU
129 123 125 128 syl2anc φFC<Uz+yABC<yFy<UFyU
130 124 recnd φFC<Uz+yABC<yFC
131 125 recnd φFC<Uz+yABC<yU
132 130 131 pncan3d φFC<Uz+yABC<yFC+U-FC=U
133 132 breq2d φFC<Uz+yABC<yFy<FC+U-FCFy<U
134 118 breq1d x=yFxUFyU
135 134 9 elrab2 ySyABFyU
136 135 baib yABySFyU
137 136 ad2antrl φFC<Uz+yABC<yySFyU
138 129 133 137 3imtr4d φFC<Uz+yABC<yFy<FC+U-FCyS
139 suprub SSxzSzxySysupS<
140 139 10 breqtrrdi SSxzSzxySyC
141 140 ex SSxzSzxySyC
142 120 26 141 3syl φFC<Uz+yABC<yySyC
143 120 14 syl φFC<Uz+yABC<yAB
144 143 122 sseldd φFC<Uz+yABC<yy
145 120 23 syl φFC<Uz+yABC<yC
146 144 145 lenltd φFC<Uz+yABC<yyC¬C<y
147 142 146 sylibd φFC<Uz+yABC<yyS¬C<y
148 138 147 syld φFC<Uz+yABC<yFy<FC+U-FC¬C<y
149 148 adantld φFC<Uz+yABC<yFCUFC<FyFy<FC+U-FC¬C<y
150 127 149 sylbid φFC<Uz+yABC<yFyFC<UFC¬C<y
151 117 150 mt2d φFC<Uz+yABC<y¬FyFC<UFC
152 151 pm2.21d φFC<Uz+yABC<yFyFC<UFC¬FC<U
153 152 expr φFC<Uz+yABC<yFyFC<UFC¬FC<U
154 153 impcomd φFC<Uz+yABFyFC<UFCC<y¬FC<U
155 116 154 syl5 φFC<Uz+yAByC<zFyFC<UFCyC<zC<y¬FC<U
156 155 rexlimdva φFC<Uz+yAByC<zFyFC<UFCyC<zC<y¬FC<U
157 114 156 syl5 φFC<Uz+yAByC<zFyFC<UFCyAByC<zC<y¬FC<U
158 113 157 mpan2d φFC<Uz+yAByC<zFyFC<UFC¬FC<U
159 47 158 syld φFC<Uz+yDyC<zFyFC<UFC¬FC<U
160 159 rexlimdva φFC<Uz+yDyC<zFyFC<UFC¬FC<U
161 44 160 mpd φFC<U¬FC<U
162 161 pm2.01da φ¬FC<U