Metamath Proof Explorer


Theorem mhphf

Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the ( QX ) which corresponds to X ). (Contributed by SN, 28-Jul-2024) (Proof shortened by SN, 8-Mar-2025)

Ref Expression
Hypotheses mhphf.q Q = I evalSub S R
mhphf.h H = I mHomP U
mhphf.u U = S 𝑠 R
mhphf.k K = Base S
mhphf.m · ˙ = S
mhphf.e × ˙ = mulGrp S
mhphf.s φ S CRing
mhphf.r φ R SubRing S
mhphf.l φ L R
mhphf.x φ X H N
mhphf.a φ A K I
Assertion mhphf φ Q X I × L · ˙ f A = N × ˙ L · ˙ Q X A

Proof

Step Hyp Ref Expression
1 mhphf.q Q = I evalSub S R
2 mhphf.h H = I mHomP U
3 mhphf.u U = S 𝑠 R
4 mhphf.k K = Base S
5 mhphf.m · ˙ = S
6 mhphf.e × ˙ = mulGrp S
7 mhphf.s φ S CRing
8 mhphf.r φ R SubRing S
9 mhphf.l φ L R
10 mhphf.x φ X H N
11 mhphf.a φ A K I
12 elmapi A K I A : I K
13 11 12 syl φ A : I K
14 13 ffnd φ A Fn I
15 11 14 fndmexd φ I V
16 15 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N I V
17 9 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N L R
18 14 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N A Fn I
19 eqidd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I A i = A i
20 16 17 18 19 ofc1 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I I × L · ˙ f A i = L · ˙ A i
21 20 oveq2d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ I × L · ˙ f A i = b i × ˙ L · ˙ A i
22 eqid mulGrp S = mulGrp S
23 22 crngmgp S CRing mulGrp S CMnd
24 7 23 syl φ mulGrp S CMnd
25 24 ad2antrr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I mulGrp S CMnd
26 elrabi b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b h 0 I | h -1 Fin
27 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
28 27 psrbagf b h 0 I | h -1 Fin b : I 0
29 26 28 syl b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b : I 0
30 29 adantl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b : I 0
31 30 ffvelcdmda φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i 0
32 4 subrgss R SubRing S R K
33 8 32 syl φ R K
34 33 9 sseldd φ L K
35 34 ad2antrr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I L K
36 13 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N A : I K
37 36 ffvelcdmda φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I A i K
38 22 4 mgpbas K = Base mulGrp S
39 22 5 mgpplusg · ˙ = + mulGrp S
40 38 6 39 mulgnn0di mulGrp S CMnd b i 0 L K A i K b i × ˙ L · ˙ A i = b i × ˙ L · ˙ b i × ˙ A i
41 25 31 35 37 40 syl13anc φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L · ˙ A i = b i × ˙ L · ˙ b i × ˙ A i
42 21 41 eqtrd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ I × L · ˙ f A i = b i × ˙ L · ˙ b i × ˙ A i
43 42 mpteq2dva φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ I × L · ˙ f A i = i I b i × ˙ L · ˙ b i × ˙ A i
44 43 oveq2d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ I × L · ˙ f A i = mulGrp S i I b i × ˙ L · ˙ b i × ˙ A i
45 eqid 1 S = 1 S
46 22 45 ringidval 1 S = 0 mulGrp S
47 7 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N S CRing
48 47 23 syl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S CMnd
49 7 crngringd φ S Ring
50 22 ringmgp S Ring mulGrp S Mnd
51 49 50 syl φ mulGrp S Mnd
52 51 ad2antrr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I mulGrp S Mnd
53 38 6 52 31 35 mulgnn0cld φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L K
54 38 6 52 31 37 mulgnn0cld φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i K
55 eqidd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L = i I b i × ˙ L
56 eqidd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i = i I b i × ˙ A i
57 15 mptexd φ i I b i × ˙ L V
58 57 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L V
59 fvexd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N 1 S V
60 funmpt Fun i I b i × ˙ L
61 60 a1i φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N Fun i I b i × ˙ L
62 27 psrbagfsupp b h 0 I | h -1 Fin finSupp 0 b
63 26 62 syl b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 0 b
64 63 adantl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 0 b
65 30 feqmptd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b = i I b i
66 65 oveq1d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N b supp 0 = i I b i supp 0
67 66 eqimsscd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i supp 0 b supp 0
68 38 46 6 mulg0 k K 0 × ˙ k = 1 S
69 68 adantl φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N k K 0 × ˙ k = 1 S
70 0zd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N 0
71 67 69 31 35 70 suppssov1 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ L supp 1 S b supp 0
72 58 59 61 64 71 fsuppsssuppgd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 1 S i I b i × ˙ L
73 15 mptexd φ i I b i × ˙ A i V
74 73 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i V
75 funmpt Fun i I b i × ˙ A i
76 75 a1i φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N Fun i I b i × ˙ A i
77 67 69 31 37 70 suppssov1 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N i I b i × ˙ A i supp 1 S b supp 0
78 74 59 76 64 77 fsuppsssuppgd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N finSupp 1 S i I b i × ˙ A i
79 38 46 39 48 16 53 54 55 56 72 78 gsummptfsadd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ L · ˙ b i × ˙ A i = mulGrp S i I b i × ˙ L · ˙ mulGrp S i I b i × ˙ A i
80 eqid g h 0 I | h -1 Fin | fld 𝑠 0 g = N = g h 0 I | h -1 Fin | fld 𝑠 0 g = N
81 2 10 mhprcl φ N 0
82 27 80 38 6 15 51 34 81 mhphflem φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ L = N × ˙ L
83 82 oveq1d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ L · ˙ mulGrp S i I b i × ˙ A i = N × ˙ L · ˙ mulGrp S i I b i × ˙ A i
84 44 79 83 3eqtrd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ I × L · ˙ f A i = N × ˙ L · ˙ mulGrp S i I b i × ˙ A i
85 84 oveq2d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = X b · ˙ N × ˙ L · ˙ mulGrp S i I b i × ˙ A i
86 eqid I mPoly U = I mPoly U
87 eqid Base U = Base U
88 eqid Base I mPoly U = Base I mPoly U
89 2 86 88 10 mhpmpl φ X Base I mPoly U
90 86 87 88 27 89 mplelf φ X : h 0 I | h -1 Fin Base U
91 3 subrgbas R SubRing S R = Base U
92 91 32 eqsstrrd R SubRing S Base U K
93 8 92 syl φ Base U K
94 90 93 fssd φ X : h 0 I | h -1 Fin K
95 94 ffvelcdmda φ b h 0 I | h -1 Fin X b K
96 26 95 sylan2 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b K
97 38 6 51 81 34 mulgnn0cld φ N × ˙ L K
98 97 adantr φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L K
99 15 adantr φ b h 0 I | h -1 Fin I V
100 7 adantr φ b h 0 I | h -1 Fin S CRing
101 11 adantr φ b h 0 I | h -1 Fin A K I
102 simpr φ b h 0 I | h -1 Fin b h 0 I | h -1 Fin
103 27 4 22 6 99 100 101 102 evlsvvvallem φ b h 0 I | h -1 Fin mulGrp S i I b i × ˙ A i K
104 26 103 sylan2 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N mulGrp S i I b i × ˙ A i K
105 4 5 47 96 98 104 crng12d φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ N × ˙ L · ˙ mulGrp S i I b i × ˙ A i = N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
106 85 105 eqtrd φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
107 106 mpteq2dva φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
108 107 oveq2d φ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i
109 eqid 0 S = 0 S
110 ovex 0 I V
111 110 rabex h 0 I | h -1 Fin V
112 111 rabex g h 0 I | h -1 Fin | fld 𝑠 0 g = N V
113 112 a1i φ g h 0 I | h -1 Fin | fld 𝑠 0 g = N V
114 49 adantr φ b h 0 I | h -1 Fin S Ring
115 4 5 114 95 103 ringcld φ b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i K
116 26 115 sylan2 φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i K
117 ssrab2 g h 0 I | h -1 Fin | fld 𝑠 0 g = N h 0 I | h -1 Fin
118 mptss g h 0 I | h -1 Fin | fld 𝑠 0 g = N h 0 I | h -1 Fin b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i
119 117 118 mp1i φ b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i
120 27 86 3 88 4 22 6 5 15 7 8 89 11 evlsvvvallem2 φ finSupp 0 S b h 0 I | h -1 Fin X b · ˙ mulGrp S i I b i × ˙ A i
121 119 120 fsuppss φ finSupp 0 S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
122 4 109 5 49 113 97 116 121 gsummulc2 φ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N N × ˙ L · ˙ X b · ˙ mulGrp S i I b i × ˙ A i = N × ˙ L · ˙ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
123 108 122 eqtrd φ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i = N × ˙ L · ˙ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
124 4 fvexi K V
125 124 a1i φ K V
126 4 5 ringcl S Ring j K k K j · ˙ k K
127 49 126 syl3an1 φ j K k K j · ˙ k K
128 127 3expb φ j K k K j · ˙ k K
129 fconst6g L K I × L : I K
130 34 129 syl φ I × L : I K
131 inidm I I = I
132 128 130 13 15 15 131 off φ I × L · ˙ f A : I K
133 125 15 132 elmapdd φ I × L · ˙ f A K I
134 1 2 3 27 80 4 22 6 5 7 8 10 133 evlsmhpvvval φ Q X I × L · ˙ f A = S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ I × L · ˙ f A i
135 1 2 3 27 80 4 22 6 5 7 8 10 11 evlsmhpvvval φ Q X A = S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
136 135 oveq2d φ N × ˙ L · ˙ Q X A = N × ˙ L · ˙ S b g h 0 I | h -1 Fin | fld 𝑠 0 g = N X b · ˙ mulGrp S i I b i × ˙ A i
137 123 134 136 3eqtr4d φ Q X I × L · ˙ f A = N × ˙ L · ˙ Q X A