Metamath Proof Explorer


Theorem mhphf

Description: A homogeneous polynomial defines a homogeneous function. Equivalently, an algebraic form is a homogeneous function. (An algebraic form is the function corresponding to a homogeneous polynomial, which in this case is the ( QX ) which corresponds to X ). (Contributed by SN, 28-Jul-2024) (Proof shortened by SN, 8-Mar-2025)

Ref Expression
Hypotheses mhphf.q Q=IevalSubSR
mhphf.h H=ImHomPU
mhphf.u U=S𝑠R
mhphf.k K=BaseS
mhphf.m ·˙=S
mhphf.e ×˙=mulGrpS
mhphf.i φIV
mhphf.s φSCRing
mhphf.r φRSubRingS
mhphf.l φLR
mhphf.n φN0
mhphf.x φXHN
mhphf.a φAKI
Assertion mhphf φQXI×L·˙fA=N×˙L·˙QXA

Proof

Step Hyp Ref Expression
1 mhphf.q Q=IevalSubSR
2 mhphf.h H=ImHomPU
3 mhphf.u U=S𝑠R
4 mhphf.k K=BaseS
5 mhphf.m ·˙=S
6 mhphf.e ×˙=mulGrpS
7 mhphf.i φIV
8 mhphf.s φSCRing
9 mhphf.r φRSubRingS
10 mhphf.l φLR
11 mhphf.n φN0
12 mhphf.x φXHN
13 mhphf.a φAKI
14 7 adantr φbgh0I|h-1Fin|fld𝑠0g=NIV
15 10 adantr φbgh0I|h-1Fin|fld𝑠0g=NLR
16 elmapi AKIA:IK
17 13 16 syl φA:IK
18 17 ffnd φAFnI
19 18 adantr φbgh0I|h-1Fin|fld𝑠0g=NAFnI
20 eqidd φbgh0I|h-1Fin|fld𝑠0g=NiIAi=Ai
21 14 15 19 20 ofc1 φbgh0I|h-1Fin|fld𝑠0g=NiII×L·˙fAi=L·˙Ai
22 21 oveq2d φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙I×L·˙fAi=bi×˙L·˙Ai
23 eqid mulGrpS=mulGrpS
24 23 crngmgp SCRingmulGrpSCMnd
25 8 24 syl φmulGrpSCMnd
26 25 ad2antrr φbgh0I|h-1Fin|fld𝑠0g=NiImulGrpSCMnd
27 elrabi bgh0I|h-1Fin|fld𝑠0g=Nbh0I|h-1Fin
28 eqid h0I|h-1Fin=h0I|h-1Fin
29 28 psrbagf bh0I|h-1Finb:I0
30 27 29 syl bgh0I|h-1Fin|fld𝑠0g=Nb:I0
31 30 adantl φbgh0I|h-1Fin|fld𝑠0g=Nb:I0
32 31 ffvelcdmda φbgh0I|h-1Fin|fld𝑠0g=NiIbi0
33 4 subrgss RSubRingSRK
34 9 33 syl φRK
35 34 10 sseldd φLK
36 35 ad2antrr φbgh0I|h-1Fin|fld𝑠0g=NiILK
37 17 adantr φbgh0I|h-1Fin|fld𝑠0g=NA:IK
38 37 ffvelcdmda φbgh0I|h-1Fin|fld𝑠0g=NiIAiK
39 23 4 mgpbas K=BasemulGrpS
40 23 5 mgpplusg ·˙=+mulGrpS
41 39 6 40 mulgnn0di mulGrpSCMndbi0LKAiKbi×˙L·˙Ai=bi×˙L·˙bi×˙Ai
42 26 32 36 38 41 syl13anc φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙L·˙Ai=bi×˙L·˙bi×˙Ai
43 22 42 eqtrd φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙I×L·˙fAi=bi×˙L·˙bi×˙Ai
44 43 mpteq2dva φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙I×L·˙fAi=iIbi×˙L·˙bi×˙Ai
45 44 oveq2d φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSiIbi×˙I×L·˙fAi=mulGrpSiIbi×˙L·˙bi×˙Ai
46 eqid 1S=1S
47 23 46 ringidval 1S=0mulGrpS
48 8 adantr φbgh0I|h-1Fin|fld𝑠0g=NSCRing
49 48 24 syl φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSCMnd
50 8 crngringd φSRing
51 23 ringmgp SRingmulGrpSMnd
52 50 51 syl φmulGrpSMnd
53 52 ad2antrr φbgh0I|h-1Fin|fld𝑠0g=NiImulGrpSMnd
54 39 6 53 32 36 mulgnn0cld φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙LK
55 39 6 53 32 38 mulgnn0cld φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙AiK
56 eqidd φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙L=iIbi×˙L
57 eqidd φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙Ai=iIbi×˙Ai
58 7 mptexd φiIbi×˙LV
59 58 adantr φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙LV
60 fvexd φbgh0I|h-1Fin|fld𝑠0g=N1SV
61 funmpt FuniIbi×˙L
62 61 a1i φbgh0I|h-1Fin|fld𝑠0g=NFuniIbi×˙L
63 28 psrbagfsupp bh0I|h-1FinfinSupp0b
64 27 63 syl bgh0I|h-1Fin|fld𝑠0g=NfinSupp0b
65 64 adantl φbgh0I|h-1Fin|fld𝑠0g=NfinSupp0b
66 31 feqmptd φbgh0I|h-1Fin|fld𝑠0g=Nb=iIbi
67 66 oveq1d φbgh0I|h-1Fin|fld𝑠0g=Nbsupp0=iIbisupp0
68 67 eqimsscd φbgh0I|h-1Fin|fld𝑠0g=NiIbisupp0bsupp0
69 39 47 6 mulg0 kK0×˙k=1S
70 69 adantl φbgh0I|h-1Fin|fld𝑠0g=NkK0×˙k=1S
71 0zd φbgh0I|h-1Fin|fld𝑠0g=N0
72 68 70 32 36 71 suppssov1 φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙Lsupp1Sbsupp0
73 59 60 62 65 72 fsuppsssuppgd φbgh0I|h-1Fin|fld𝑠0g=NfinSupp1SiIbi×˙L
74 7 mptexd φiIbi×˙AiV
75 74 adantr φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙AiV
76 funmpt FuniIbi×˙Ai
77 76 a1i φbgh0I|h-1Fin|fld𝑠0g=NFuniIbi×˙Ai
78 68 70 32 38 71 suppssov1 φbgh0I|h-1Fin|fld𝑠0g=NiIbi×˙Aisupp1Sbsupp0
79 75 60 77 65 78 fsuppsssuppgd φbgh0I|h-1Fin|fld𝑠0g=NfinSupp1SiIbi×˙Ai
80 39 47 40 49 14 54 55 56 57 73 79 gsummptfsadd φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSiIbi×˙L·˙bi×˙Ai=mulGrpSiIbi×˙L·˙mulGrpSiIbi×˙Ai
81 eqid gh0I|h-1Fin|fld𝑠0g=N=gh0I|h-1Fin|fld𝑠0g=N
82 28 81 39 6 7 52 35 11 mhphflem φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSiIbi×˙L=N×˙L
83 82 oveq1d φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSiIbi×˙L·˙mulGrpSiIbi×˙Ai=N×˙L·˙mulGrpSiIbi×˙Ai
84 45 80 83 3eqtrd φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSiIbi×˙I×L·˙fAi=N×˙L·˙mulGrpSiIbi×˙Ai
85 84 oveq2d φbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙I×L·˙fAi=Xb·˙N×˙L·˙mulGrpSiIbi×˙Ai
86 eqid ImPolyU=ImPolyU
87 eqid BaseU=BaseU
88 eqid BaseImPolyU=BaseImPolyU
89 3 ovexi UV
90 89 a1i φUV
91 2 86 88 7 90 11 12 mhpmpl φXBaseImPolyU
92 86 87 88 28 91 mplelf φX:h0I|h-1FinBaseU
93 3 subrgbas RSubRingSR=BaseU
94 93 33 eqsstrrd RSubRingSBaseUK
95 9 94 syl φBaseUK
96 92 95 fssd φX:h0I|h-1FinK
97 96 ffvelcdmda φbh0I|h-1FinXbK
98 27 97 sylan2 φbgh0I|h-1Fin|fld𝑠0g=NXbK
99 39 6 52 11 35 mulgnn0cld φN×˙LK
100 99 adantr φbgh0I|h-1Fin|fld𝑠0g=NN×˙LK
101 7 adantr φbh0I|h-1FinIV
102 8 adantr φbh0I|h-1FinSCRing
103 13 adantr φbh0I|h-1FinAKI
104 simpr φbh0I|h-1Finbh0I|h-1Fin
105 28 4 23 6 101 102 103 104 evlsvvvallem φbh0I|h-1FinmulGrpSiIbi×˙AiK
106 27 105 sylan2 φbgh0I|h-1Fin|fld𝑠0g=NmulGrpSiIbi×˙AiK
107 4 5 48 98 100 106 crng12d φbgh0I|h-1Fin|fld𝑠0g=NXb·˙N×˙L·˙mulGrpSiIbi×˙Ai=N×˙L·˙Xb·˙mulGrpSiIbi×˙Ai
108 85 107 eqtrd φbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙I×L·˙fAi=N×˙L·˙Xb·˙mulGrpSiIbi×˙Ai
109 108 mpteq2dva φbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙I×L·˙fAi=bgh0I|h-1Fin|fld𝑠0g=NN×˙L·˙Xb·˙mulGrpSiIbi×˙Ai
110 109 oveq2d φSbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙I×L·˙fAi=Sbgh0I|h-1Fin|fld𝑠0g=NN×˙L·˙Xb·˙mulGrpSiIbi×˙Ai
111 eqid 0S=0S
112 ovex 0IV
113 112 rabex h0I|h-1FinV
114 113 rabex gh0I|h-1Fin|fld𝑠0g=NV
115 114 a1i φgh0I|h-1Fin|fld𝑠0g=NV
116 50 adantr φbh0I|h-1FinSRing
117 4 5 116 97 105 ringcld φbh0I|h-1FinXb·˙mulGrpSiIbi×˙AiK
118 27 117 sylan2 φbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙AiK
119 ssrab2 gh0I|h-1Fin|fld𝑠0g=Nh0I|h-1Fin
120 mptss gh0I|h-1Fin|fld𝑠0g=Nh0I|h-1Finbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Aibh0I|h-1FinXb·˙mulGrpSiIbi×˙Ai
121 119 120 mp1i φbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Aibh0I|h-1FinXb·˙mulGrpSiIbi×˙Ai
122 28 86 3 88 4 23 6 5 7 8 9 91 13 evlsvvvallem2 φfinSupp0Sbh0I|h-1FinXb·˙mulGrpSiIbi×˙Ai
123 121 122 fsuppss φfinSupp0Sbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Ai
124 4 111 5 50 115 99 118 123 gsummulc2 φSbgh0I|h-1Fin|fld𝑠0g=NN×˙L·˙Xb·˙mulGrpSiIbi×˙Ai=N×˙L·˙Sbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Ai
125 110 124 eqtrd φSbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙I×L·˙fAi=N×˙L·˙Sbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Ai
126 4 fvexi KV
127 126 a1i φKV
128 4 5 ringcl SRingjKkKj·˙kK
129 50 128 syl3an1 φjKkKj·˙kK
130 129 3expb φjKkKj·˙kK
131 fconst6g LKI×L:IK
132 35 131 syl φI×L:IK
133 inidm II=I
134 130 132 17 7 7 133 off φI×L·˙fA:IK
135 127 7 134 elmapdd φI×L·˙fAKI
136 1 2 3 28 81 4 23 6 5 7 8 9 11 12 135 evlsmhpvvval φQXI×L·˙fA=Sbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙I×L·˙fAi
137 1 2 3 28 81 4 23 6 5 7 8 9 11 12 13 evlsmhpvvval φQXA=Sbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Ai
138 137 oveq2d φN×˙L·˙QXA=N×˙L·˙Sbgh0I|h-1Fin|fld𝑠0g=NXb·˙mulGrpSiIbi×˙Ai
139 125 136 138 3eqtr4d φQXI×L·˙fA=N×˙L·˙QXA