Metamath Proof Explorer


Theorem minvecolem2

Description: Lemma for minveco . Any two points K and L in Y are close to each other if they are close to the infimum of distance to A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
minvecolem2.1 φB
minvecolem2.2 φ0B
minvecolem2.3 φKY
minvecolem2.4 φLY
minvecolem2.5 φADK2S2+B
minvecolem2.6 φADL2S2+B
Assertion minvecolem2 φKDL24B

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 minvecolem2.1 φB
13 minvecolem2.2 φ0B
14 minvecolem2.3 φKY
15 minvecolem2.4 φLY
16 minvecolem2.5 φADK2S2+B
17 minvecolem2.6 φADL2S2+B
18 4re 4
19 1 2 3 4 5 6 7 8 9 10 minvecolem1 φRRwR0w
20 19 simp1d φR
21 19 simp2d φR
22 0re 0
23 19 simp3d φwR0w
24 breq1 x=0xw0w
25 24 ralbidv x=0wRxwwR0w
26 25 rspcev 0wR0wxwRxw
27 22 23 26 sylancr φxwRxw
28 infrecl RRxwRxwsupR<
29 20 21 27 28 syl3anc φsupR<
30 11 29 eqeltrid φS
31 30 resqcld φS2
32 remulcl 4S24S2
33 18 31 32 sylancr φ4S2
34 phnv UCPreHilOLDUNrmCVec
35 5 34 syl φUNrmCVec
36 1 8 imsmet UNrmCVecDMetX
37 35 36 syl φDMetX
38 inss1 SubSpUCBanSubSpU
39 38 6 sselid φWSubSpU
40 eqid SubSpU=SubSpU
41 1 4 40 sspba UNrmCVecWSubSpUYX
42 35 39 41 syl2anc φYX
43 42 14 sseldd φKX
44 42 15 sseldd φLX
45 metcl DMetXKXLXKDL
46 37 43 44 45 syl3anc φKDL
47 46 resqcld φKDL2
48 33 47 readdcld φ4S2+KDL2
49 ax-1cn 1
50 halfcl 112
51 49 50 mp1i φ12
52 eqid +vU=+vU
53 eqid +vW=+vW
54 4 52 53 40 sspgval UNrmCVecWSubSpUKYLYK+vWL=K+vUL
55 35 39 14 15 54 syl22anc φK+vWL=K+vUL
56 40 sspnv UNrmCVecWSubSpUWNrmCVec
57 35 39 56 syl2anc φWNrmCVec
58 4 53 nvgcl WNrmCVecKYLYK+vWLY
59 57 14 15 58 syl3anc φK+vWLY
60 55 59 eqeltrrd φK+vULY
61 eqid 𝑠OLDU=𝑠OLDU
62 eqid 𝑠OLDW=𝑠OLDW
63 4 61 62 40 sspsval UNrmCVecWSubSpU12K+vULY12𝑠OLDWK+vUL=12𝑠OLDUK+vUL
64 35 39 51 60 63 syl22anc φ12𝑠OLDWK+vUL=12𝑠OLDUK+vUL
65 4 62 nvscl WNrmCVec12K+vULY12𝑠OLDWK+vULY
66 57 51 60 65 syl3anc φ12𝑠OLDWK+vULY
67 64 66 eqeltrrd φ12𝑠OLDUK+vULY
68 42 67 sseldd φ12𝑠OLDUK+vULX
69 1 2 nvmcl UNrmCVecAX12𝑠OLDUK+vULXAM12𝑠OLDUK+vULX
70 35 7 68 69 syl3anc φAM12𝑠OLDUK+vULX
71 1 3 nvcl UNrmCVecAM12𝑠OLDUK+vULXNAM12𝑠OLDUK+vUL
72 35 70 71 syl2anc φNAM12𝑠OLDUK+vUL
73 72 resqcld φNAM12𝑠OLDUK+vUL2
74 remulcl 4NAM12𝑠OLDUK+vUL24NAM12𝑠OLDUK+vUL2
75 18 73 74 sylancr φ4NAM12𝑠OLDUK+vUL2
76 75 47 readdcld φ4NAM12𝑠OLDUK+vUL2+KDL2
77 31 12 readdcld φS2+B
78 remulcl 4S2+B4S2+B
79 18 77 78 sylancr φ4S2+B
80 22 a1i φ0
81 infregelb RRxwRxw00supR<wR0w
82 20 21 27 80 81 syl31anc φ0supR<wR0w
83 23 82 mpbird φ0supR<
84 83 11 breqtrrdi φ0S
85 eqid NAM12𝑠OLDUK+vUL=NAM12𝑠OLDUK+vUL
86 oveq2 y=12𝑠OLDUK+vULAMy=AM12𝑠OLDUK+vUL
87 86 fveq2d y=12𝑠OLDUK+vULNAMy=NAM12𝑠OLDUK+vUL
88 87 rspceeqv 12𝑠OLDUK+vULYNAM12𝑠OLDUK+vUL=NAM12𝑠OLDUK+vULyYNAM12𝑠OLDUK+vUL=NAMy
89 67 85 88 sylancl φyYNAM12𝑠OLDUK+vUL=NAMy
90 eqid yYNAMy=yYNAMy
91 fvex NAMyV
92 90 91 elrnmpti NAM12𝑠OLDUK+vULranyYNAMyyYNAM12𝑠OLDUK+vUL=NAMy
93 89 92 sylibr φNAM12𝑠OLDUK+vULranyYNAMy
94 93 10 eleqtrrdi φNAM12𝑠OLDUK+vULR
95 infrelb RxwRxwNAM12𝑠OLDUK+vULRsupR<NAM12𝑠OLDUK+vUL
96 20 27 94 95 syl3anc φsupR<NAM12𝑠OLDUK+vUL
97 11 96 eqbrtrid φSNAM12𝑠OLDUK+vUL
98 le2sq2 S0SNAM12𝑠OLDUK+vULSNAM12𝑠OLDUK+vULS2NAM12𝑠OLDUK+vUL2
99 30 84 72 97 98 syl22anc φS2NAM12𝑠OLDUK+vUL2
100 4pos 0<4
101 18 100 pm3.2i 40<4
102 lemul2 S2NAM12𝑠OLDUK+vUL240<4S2NAM12𝑠OLDUK+vUL24S24NAM12𝑠OLDUK+vUL2
103 101 102 mp3an3 S2NAM12𝑠OLDUK+vUL2S2NAM12𝑠OLDUK+vUL24S24NAM12𝑠OLDUK+vUL2
104 31 73 103 syl2anc φS2NAM12𝑠OLDUK+vUL24S24NAM12𝑠OLDUK+vUL2
105 99 104 mpbid φ4S24NAM12𝑠OLDUK+vUL2
106 33 75 47 105 leadd1dd φ4S2+KDL24NAM12𝑠OLDUK+vUL2+KDL2
107 metcl DMetXAXKXADK
108 37 7 43 107 syl3anc φADK
109 108 resqcld φADK2
110 metcl DMetXAXLXADL
111 37 7 44 110 syl3anc φADL
112 111 resqcld φADL2
113 109 112 77 77 16 17 le2addd φADK2+ADL2S2+B+S2+B
114 77 recnd φS2+B
115 114 2timesd φ2S2+B=S2+B+S2+B
116 113 115 breqtrrd φADK2+ADL22S2+B
117 109 112 readdcld φADK2+ADL2
118 2re 2
119 remulcl 2S2+B2S2+B
120 118 77 119 sylancr φ2S2+B
121 2pos 0<2
122 118 121 pm3.2i 20<2
123 lemul2 ADK2+ADL22S2+B20<2ADK2+ADL22S2+B2ADK2+ADL222S2+B
124 122 123 mp3an3 ADK2+ADL22S2+BADK2+ADL22S2+B2ADK2+ADL222S2+B
125 117 120 124 syl2anc φADK2+ADL22S2+B2ADK2+ADL222S2+B
126 116 125 mpbid φ2ADK2+ADL222S2+B
127 1 2 nvmcl UNrmCVecAXKXAMKX
128 35 7 43 127 syl3anc φAMKX
129 1 2 nvmcl UNrmCVecAXLXAMLX
130 35 7 44 129 syl3anc φAMLX
131 1 52 2 3 phpar2 UCPreHilOLDAMKXAMLXNAMK+vUAML2+NAMKMAML2=2NAMK2+NAML2
132 5 128 130 131 syl3anc φNAMK+vUAML2+NAMKMAML2=2NAMK2+NAML2
133 2cn 2
134 72 recnd φNAM12𝑠OLDUK+vUL
135 sqmul 2NAM12𝑠OLDUK+vUL2NAM12𝑠OLDUK+vUL2=22NAM12𝑠OLDUK+vUL2
136 133 134 135 sylancr φ2NAM12𝑠OLDUK+vUL2=22NAM12𝑠OLDUK+vUL2
137 sq2 22=4
138 137 oveq1i 22NAM12𝑠OLDUK+vUL2=4NAM12𝑠OLDUK+vUL2
139 136 138 eqtrdi φ2NAM12𝑠OLDUK+vUL2=4NAM12𝑠OLDUK+vUL2
140 133 a1i φ2
141 1 61 3 nvs UNrmCVec2AM12𝑠OLDUK+vULXN2𝑠OLDUAM12𝑠OLDUK+vUL=2NAM12𝑠OLDUK+vUL
142 35 140 70 141 syl3anc φN2𝑠OLDUAM12𝑠OLDUK+vUL=2NAM12𝑠OLDUK+vUL
143 0le2 02
144 absid 2022=2
145 118 143 144 mp2an 2=2
146 145 oveq1i 2NAM12𝑠OLDUK+vUL=2NAM12𝑠OLDUK+vUL
147 142 146 eqtrdi φN2𝑠OLDUAM12𝑠OLDUK+vUL=2NAM12𝑠OLDUK+vUL
148 1 2 61 nvmdi UNrmCVec2AX12𝑠OLDUK+vULX2𝑠OLDUAM12𝑠OLDUK+vUL=2𝑠OLDUAM2𝑠OLDU12𝑠OLDUK+vUL
149 35 140 7 68 148 syl13anc φ2𝑠OLDUAM12𝑠OLDUK+vUL=2𝑠OLDUAM2𝑠OLDU12𝑠OLDUK+vUL
150 1 52 61 nv2 UNrmCVecAXA+vUA=2𝑠OLDUA
151 35 7 150 syl2anc φA+vUA=2𝑠OLDUA
152 2ne0 20
153 133 152 recidi 212=1
154 153 oveq1i 212𝑠OLDUK+vUL=1𝑠OLDUK+vUL
155 1 52 nvgcl UNrmCVecKXLXK+vULX
156 35 43 44 155 syl3anc φK+vULX
157 1 61 nvsid UNrmCVecK+vULX1𝑠OLDUK+vUL=K+vUL
158 35 156 157 syl2anc φ1𝑠OLDUK+vUL=K+vUL
159 154 158 eqtrid φ212𝑠OLDUK+vUL=K+vUL
160 1 61 nvsass UNrmCVec212K+vULX212𝑠OLDUK+vUL=2𝑠OLDU12𝑠OLDUK+vUL
161 35 140 51 156 160 syl13anc φ212𝑠OLDUK+vUL=2𝑠OLDU12𝑠OLDUK+vUL
162 159 161 eqtr3d φK+vUL=2𝑠OLDU12𝑠OLDUK+vUL
163 151 162 oveq12d φA+vUAMK+vUL=2𝑠OLDUAM2𝑠OLDU12𝑠OLDUK+vUL
164 1 52 2 nvaddsub4 UNrmCVecAXAXKXLXA+vUAMK+vUL=AMK+vUAML
165 35 7 7 43 44 164 syl122anc φA+vUAMK+vUL=AMK+vUAML
166 149 163 165 3eqtr2d φ2𝑠OLDUAM12𝑠OLDUK+vUL=AMK+vUAML
167 166 fveq2d φN2𝑠OLDUAM12𝑠OLDUK+vUL=NAMK+vUAML
168 147 167 eqtr3d φ2NAM12𝑠OLDUK+vUL=NAMK+vUAML
169 168 oveq1d φ2NAM12𝑠OLDUK+vUL2=NAMK+vUAML2
170 139 169 eqtr3d φ4NAM12𝑠OLDUK+vUL2=NAMK+vUAML2
171 1 2 3 8 imsdval UNrmCVecLXKXLDK=NLMK
172 35 44 43 171 syl3anc φLDK=NLMK
173 metsym DMetXKXLXKDL=LDK
174 37 43 44 173 syl3anc φKDL=LDK
175 1 2 nvnnncan1 UNrmCVecAXKXLXAMKMAML=LMK
176 35 7 43 44 175 syl13anc φAMKMAML=LMK
177 176 fveq2d φNAMKMAML=NLMK
178 172 174 177 3eqtr4d φKDL=NAMKMAML
179 178 oveq1d φKDL2=NAMKMAML2
180 170 179 oveq12d φ4NAM12𝑠OLDUK+vUL2+KDL2=NAMK+vUAML2+NAMKMAML2
181 1 2 3 8 imsdval UNrmCVecAXKXADK=NAMK
182 35 7 43 181 syl3anc φADK=NAMK
183 182 oveq1d φADK2=NAMK2
184 1 2 3 8 imsdval UNrmCVecAXLXADL=NAML
185 35 7 44 184 syl3anc φADL=NAML
186 185 oveq1d φADL2=NAML2
187 183 186 oveq12d φADK2+ADL2=NAMK2+NAML2
188 187 oveq2d φ2ADK2+ADL2=2NAMK2+NAML2
189 132 180 188 3eqtr4d φ4NAM12𝑠OLDUK+vUL2+KDL2=2ADK2+ADL2
190 2t2e4 22=4
191 190 oveq1i 22S2+B=4S2+B
192 140 140 114 mulassd φ22S2+B=22S2+B
193 191 192 eqtr3id φ4S2+B=22S2+B
194 126 189 193 3brtr4d φ4NAM12𝑠OLDUK+vUL2+KDL24S2+B
195 48 76 79 106 194 letrd φ4S2+KDL24S2+B
196 4cn 4
197 196 a1i φ4
198 31 recnd φS2
199 12 recnd φB
200 197 198 199 adddid φ4S2+B=4S2+4B
201 195 200 breqtrd φ4S2+KDL24S2+4B
202 remulcl 4B4B
203 18 12 202 sylancr φ4B
204 47 203 33 leadd2d φKDL24B4S2+KDL24S2+4B
205 201 204 mpbird φKDL24B