Metamath Proof Explorer


Theorem minvecolem5

Description: Lemma for minveco . Discharge the assumption about the sequence F by applying countable choice ax-cc . (Contributed by Mario Carneiro, 9-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
minveco.d D=IndMetU
minveco.j J=MetOpenD
minveco.r R=ranyYNAMy
minveco.s S=supR<
Assertion minvecolem5 φxYyYNAMxNAMy

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 minveco.d D=IndMetU
9 minveco.j J=MetOpenD
10 minveco.r R=ranyYNAMy
11 minveco.s S=supR<
12 nnrecgt0 n0<1n
13 12 adantl φn0<1n
14 nnrecre n1n
15 14 adantl φn1n
16 1 2 3 4 5 6 7 8 9 10 minvecolem1 φRRwR0w
17 16 adantr φnRRwR0w
18 17 simp1d φnR
19 17 simp2d φnR
20 0re 0
21 17 simp3d φnwR0w
22 breq1 x=0xw0w
23 22 ralbidv x=0wRxwwR0w
24 23 rspcev 0wR0wxwRxw
25 20 21 24 sylancr φnxwRxw
26 infrecl RRxwRxwsupR<
27 18 19 25 26 syl3anc φnsupR<
28 11 27 eqeltrid φnS
29 28 resqcld φnS2
30 15 29 ltaddposd φn0<1nS2<S2+1n
31 13 30 mpbid φnS2<S2+1n
32 29 15 readdcld φnS2+1n
33 28 sqge0d φn0S2
34 29 15 33 13 addgegt0d φn0<S2+1n
35 32 34 elrpd φnS2+1n+
36 35 rpge0d φn0S2+1n
37 resqrtth S2+1n0S2+1nS2+1n2=S2+1n
38 32 36 37 syl2anc φnS2+1n2=S2+1n
39 31 38 breqtrrd φnS2<S2+1n2
40 35 rpsqrtcld φnS2+1n+
41 40 rpred φnS2+1n
42 0red φn0
43 infregelb RRxwRxw00supR<wR0w
44 18 19 25 42 43 syl31anc φn0supR<wR0w
45 21 44 mpbird φn0supR<
46 45 11 breqtrrdi φn0S
47 32 36 sqrtge0d φn0S2+1n
48 28 41 46 47 lt2sqd φnS<S2+1nS2<S2+1n2
49 39 48 mpbird φnS<S2+1n
50 28 41 ltnled φnS<S2+1n¬S2+1nS
51 49 50 mpbid φn¬S2+1nS
52 11 breq2i S2+1nSS2+1nsupR<
53 infregelb RRxwRxwS2+1nS2+1nsupR<wRS2+1nw
54 18 19 25 41 53 syl31anc φnS2+1nsupR<wRS2+1nw
55 52 54 bitrid φnS2+1nSwRS2+1nw
56 10 raleqi wRS2+1nwwranyYNAMyS2+1nw
57 fvex NAMyV
58 57 rgenw yYNAMyV
59 eqid yYNAMy=yYNAMy
60 breq2 w=NAMyS2+1nwS2+1nNAMy
61 59 60 ralrnmptw yYNAMyVwranyYNAMyS2+1nwyYS2+1nNAMy
62 58 61 ax-mp wranyYNAMyS2+1nwyYS2+1nNAMy
63 56 62 bitri wRS2+1nwyYS2+1nNAMy
64 55 63 bitrdi φnS2+1nSyYS2+1nNAMy
65 51 64 mtbid φn¬yYS2+1nNAMy
66 rexnal yY¬S2+1nNAMy¬yYS2+1nNAMy
67 65 66 sylibr φnyY¬S2+1nNAMy
68 32 adantr φnyYS2+1n
69 phnv UCPreHilOLDUNrmCVec
70 5 69 syl φUNrmCVec
71 70 ad2antrr φnyYUNrmCVec
72 7 ad2antrr φnyYAX
73 inss1 SubSpUCBanSubSpU
74 73 6 sselid φWSubSpU
75 eqid SubSpU=SubSpU
76 1 4 75 sspba UNrmCVecWSubSpUYX
77 70 74 76 syl2anc φYX
78 77 adantr φnYX
79 78 sselda φnyYyX
80 1 2 nvmcl UNrmCVecAXyXAMyX
81 71 72 79 80 syl3anc φnyYAMyX
82 1 3 nvcl UNrmCVecAMyXNAMy
83 71 81 82 syl2anc φnyYNAMy
84 83 resqcld φnyYNAMy2
85 68 84 letrid φnyYS2+1nNAMy2NAMy2S2+1n
86 85 ord φnyY¬S2+1nNAMy2NAMy2S2+1n
87 41 adantr φnyYS2+1n
88 47 adantr φnyY0S2+1n
89 1 3 nvge0 UNrmCVecAMyX0NAMy
90 71 81 89 syl2anc φnyY0NAMy
91 87 83 88 90 le2sqd φnyYS2+1nNAMyS2+1n2NAMy2
92 38 adantr φnyYS2+1n2=S2+1n
93 92 breq1d φnyYS2+1n2NAMy2S2+1nNAMy2
94 91 93 bitrd φnyYS2+1nNAMyS2+1nNAMy2
95 94 notbid φnyY¬S2+1nNAMy¬S2+1nNAMy2
96 1 2 3 8 imsdval UNrmCVecAXyXADy=NAMy
97 71 72 79 96 syl3anc φnyYADy=NAMy
98 97 oveq1d φnyYADy2=NAMy2
99 98 breq1d φnyYADy2S2+1nNAMy2S2+1n
100 86 95 99 3imtr4d φnyY¬S2+1nNAMyADy2S2+1n
101 100 reximdva φnyY¬S2+1nNAMyyYADy2S2+1n
102 67 101 mpd φnyYADy2S2+1n
103 102 ralrimiva φnyYADy2S2+1n
104 4 fvexi YV
105 nnenom ω
106 oveq2 y=fnADy=ADfn
107 106 oveq1d y=fnADy2=ADfn2
108 107 breq1d y=fnADy2S2+1nADfn2S2+1n
109 104 105 108 axcc4 nyYADy2S2+1nff:YnADfn2S2+1n
110 103 109 syl φff:YnADfn2S2+1n
111 5 adantr φf:YnADfn2S2+1nUCPreHilOLD
112 6 adantr φf:YnADfn2S2+1nWSubSpUCBan
113 7 adantr φf:YnADfn2S2+1nAX
114 simprl φf:YnADfn2S2+1nf:Y
115 simprr φf:YnADfn2S2+1nnADfn2S2+1n
116 fveq2 n=kfn=fk
117 116 oveq2d n=kADfn=ADfk
118 117 oveq1d n=kADfn2=ADfk2
119 oveq2 n=k1n=1k
120 119 oveq2d n=kS2+1n=S2+1k
121 118 120 breq12d n=kADfn2S2+1nADfk2S2+1k
122 121 rspccva nADfn2S2+1nkADfk2S2+1k
123 115 122 sylan φf:YnADfn2S2+1nkADfk2S2+1k
124 eqid 1ADtJf+S22S2=1ADtJf+S22S2
125 1 2 3 4 111 112 113 8 9 10 11 114 123 124 minvecolem4 φf:YnADfn2S2+1nxYyYNAMxNAMy
126 110 125 exlimddv φxYyYNAMxNAMy