Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
opnmbllem
Next ⟩
opnmbl
Metamath Proof Explorer
Ascii
Unicode
Theorem
opnmbllem
Description:
Lemma for
opnmbl
.
(Contributed by
Mario Carneiro
, 26-Mar-2015)
Ref
Expression
Hypothesis
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
Assertion
opnmbllem
⊢
A
∈
topGen
ran
.
→
A
∈
dom
vol
Proof
Step
Hyp
Ref
Expression
1
dyadmbl.1
⊢
F
=
x
∈
ℤ
,
y
∈
ℕ
0
⟼
x
2
y
x
+
1
2
y
2
fveq2
⊢
z
=
w
→
.
z
=
.
w
3
2
sseq1d
⊢
z
=
w
→
.
z
⊆
A
↔
.
w
⊆
A
4
3
elrab
⊢
w
∈
z
∈
ran
F
|
.
z
⊆
A
↔
w
∈
ran
F
∧
.
w
⊆
A
5
simprr
⊢
A
∈
topGen
ran
.
∧
w
∈
ran
F
∧
.
w
⊆
A
→
.
w
⊆
A
6
fvex
⊢
.
w
∈
V
7
6
elpw
⊢
.
w
∈
𝒫
A
↔
.
w
⊆
A
8
5
7
sylibr
⊢
A
∈
topGen
ran
.
∧
w
∈
ran
F
∧
.
w
⊆
A
→
.
w
∈
𝒫
A
9
4
8
sylan2b
⊢
A
∈
topGen
ran
.
∧
w
∈
z
∈
ran
F
|
.
z
⊆
A
→
.
w
∈
𝒫
A
10
9
ralrimiva
⊢
A
∈
topGen
ran
.
→
∀
w
∈
z
∈
ran
F
|
.
z
⊆
A
.
w
∈
𝒫
A
11
iccf
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
*
12
ffun
⊢
.
:
ℝ
*
×
ℝ
*
⟶
𝒫
ℝ
*
→
Fun
.
13
11
12
ax-mp
⊢
Fun
.
14
ssrab2
⊢
z
∈
ran
F
|
.
z
⊆
A
⊆
ran
F
15
1
dyadf
⊢
F
:
ℤ
×
ℕ
0
⟶
≤
∩
ℝ
2
16
frn
⊢
F
:
ℤ
×
ℕ
0
⟶
≤
∩
ℝ
2
→
ran
F
⊆
≤
∩
ℝ
2
17
15
16
ax-mp
⊢
ran
F
⊆
≤
∩
ℝ
2
18
inss2
⊢
≤
∩
ℝ
2
⊆
ℝ
2
19
rexpssxrxp
⊢
ℝ
2
⊆
ℝ
*
×
ℝ
*
20
18
19
sstri
⊢
≤
∩
ℝ
2
⊆
ℝ
*
×
ℝ
*
21
17
20
sstri
⊢
ran
F
⊆
ℝ
*
×
ℝ
*
22
14
21
sstri
⊢
z
∈
ran
F
|
.
z
⊆
A
⊆
ℝ
*
×
ℝ
*
23
11
fdmi
⊢
dom
.
=
ℝ
*
×
ℝ
*
24
22
23
sseqtrri
⊢
z
∈
ran
F
|
.
z
⊆
A
⊆
dom
.
25
funimass4
⊢
Fun
.
∧
z
∈
ran
F
|
.
z
⊆
A
⊆
dom
.
→
.
z
∈
ran
F
|
.
z
⊆
A
⊆
𝒫
A
↔
∀
w
∈
z
∈
ran
F
|
.
z
⊆
A
.
w
∈
𝒫
A
26
13
24
25
mp2an
⊢
.
z
∈
ran
F
|
.
z
⊆
A
⊆
𝒫
A
↔
∀
w
∈
z
∈
ran
F
|
.
z
⊆
A
.
w
∈
𝒫
A
27
10
26
sylibr
⊢
A
∈
topGen
ran
.
→
.
z
∈
ran
F
|
.
z
⊆
A
⊆
𝒫
A
28
sspwuni
⊢
.
z
∈
ran
F
|
.
z
⊆
A
⊆
𝒫
A
↔
⋃
.
z
∈
ran
F
|
.
z
⊆
A
⊆
A
29
27
28
sylib
⊢
A
∈
topGen
ran
.
→
⋃
.
z
∈
ran
F
|
.
z
⊆
A
⊆
A
30
eqid
⊢
abs
∘
−
↾
ℝ
2
=
abs
∘
−
↾
ℝ
2
31
30
rexmet
⊢
abs
∘
−
↾
ℝ
2
∈
∞Met
ℝ
32
eqid
⊢
MetOpen
abs
∘
−
↾
ℝ
2
=
MetOpen
abs
∘
−
↾
ℝ
2
33
30
32
tgioo
⊢
topGen
ran
.
=
MetOpen
abs
∘
−
↾
ℝ
2
34
33
mopni2
⊢
abs
∘
−
↾
ℝ
2
∈
∞Met
ℝ
∧
A
∈
topGen
ran
.
∧
w
∈
A
→
∃
r
∈
ℝ
+
w
ball
abs
∘
−
↾
ℝ
2
r
⊆
A
35
31
34
mp3an1
⊢
A
∈
topGen
ran
.
∧
w
∈
A
→
∃
r
∈
ℝ
+
w
ball
abs
∘
−
↾
ℝ
2
r
⊆
A
36
elssuni
⊢
A
∈
topGen
ran
.
→
A
⊆
⋃
topGen
ran
.
37
uniretop
⊢
ℝ
=
⋃
topGen
ran
.
38
36
37
sseqtrrdi
⊢
A
∈
topGen
ran
.
→
A
⊆
ℝ
39
38
sselda
⊢
A
∈
topGen
ran
.
∧
w
∈
A
→
w
∈
ℝ
40
rpre
⊢
r
∈
ℝ
+
→
r
∈
ℝ
41
30
bl2ioo
⊢
w
∈
ℝ
∧
r
∈
ℝ
→
w
ball
abs
∘
−
↾
ℝ
2
r
=
w
−
r
w
+
r
42
39
40
41
syl2an
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
→
w
ball
abs
∘
−
↾
ℝ
2
r
=
w
−
r
w
+
r
43
42
sseq1d
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
→
w
ball
abs
∘
−
↾
ℝ
2
r
⊆
A
↔
w
−
r
w
+
r
⊆
A
44
2re
⊢
2
∈
ℝ
45
1lt2
⊢
1
<
2
46
expnlbnd
⊢
r
∈
ℝ
+
∧
2
∈
ℝ
∧
1
<
2
→
∃
n
∈
ℕ
1
2
n
<
r
47
44
45
46
mp3an23
⊢
r
∈
ℝ
+
→
∃
n
∈
ℕ
1
2
n
<
r
48
47
ad2antrl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
→
∃
n
∈
ℕ
1
2
n
<
r
49
39
ad2antrr
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
∈
ℝ
50
2nn
⊢
2
∈
ℕ
51
nnnn0
⊢
n
∈
ℕ
→
n
∈
ℕ
0
52
51
ad2antrl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
n
∈
ℕ
0
53
nnexpcl
⊢
2
∈
ℕ
∧
n
∈
ℕ
0
→
2
n
∈
ℕ
54
50
52
53
sylancr
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
2
n
∈
ℕ
55
54
nnred
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
2
n
∈
ℝ
56
49
55
remulcld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
∈
ℝ
57
fllelt
⊢
w
2
n
∈
ℝ
→
w
2
n
≤
w
2
n
∧
w
2
n
<
w
2
n
+
1
58
56
57
syl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
≤
w
2
n
∧
w
2
n
<
w
2
n
+
1
59
58
simpld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
≤
w
2
n
60
reflcl
⊢
w
2
n
∈
ℝ
→
w
2
n
∈
ℝ
61
56
60
syl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
∈
ℝ
62
54
nngt0d
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
0
<
2
n
63
ledivmul2
⊢
w
2
n
∈
ℝ
∧
w
∈
ℝ
∧
2
n
∈
ℝ
∧
0
<
2
n
→
w
2
n
2
n
≤
w
↔
w
2
n
≤
w
2
n
64
61
49
55
62
63
syl112anc
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
≤
w
↔
w
2
n
≤
w
2
n
65
59
64
mpbird
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
≤
w
66
peano2re
⊢
w
2
n
∈
ℝ
→
w
2
n
+
1
∈
ℝ
67
61
66
syl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
+
1
∈
ℝ
68
67
54
nndivred
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
+
1
2
n
∈
ℝ
69
58
simprd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
<
w
2
n
+
1
70
ltmuldiv
⊢
w
∈
ℝ
∧
w
2
n
+
1
∈
ℝ
∧
2
n
∈
ℝ
∧
0
<
2
n
→
w
2
n
<
w
2
n
+
1
↔
w
<
w
2
n
+
1
2
n
71
49
67
55
62
70
syl112anc
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
<
w
2
n
+
1
↔
w
<
w
2
n
+
1
2
n
72
69
71
mpbid
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
<
w
2
n
+
1
2
n
73
49
68
72
ltled
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
≤
w
2
n
+
1
2
n
74
61
54
nndivred
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
∈
ℝ
75
elicc2
⊢
w
2
n
2
n
∈
ℝ
∧
w
2
n
+
1
2
n
∈
ℝ
→
w
∈
w
2
n
2
n
w
2
n
+
1
2
n
↔
w
∈
ℝ
∧
w
2
n
2
n
≤
w
∧
w
≤
w
2
n
+
1
2
n
76
74
68
75
syl2anc
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
∈
w
2
n
2
n
w
2
n
+
1
2
n
↔
w
∈
ℝ
∧
w
2
n
2
n
≤
w
∧
w
≤
w
2
n
+
1
2
n
77
49
65
73
76
mpbir3and
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
∈
w
2
n
2
n
w
2
n
+
1
2
n
78
56
flcld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
∈
ℤ
79
1
dyadval
⊢
w
2
n
∈
ℤ
∧
n
∈
ℕ
0
→
w
2
n
F
n
=
w
2
n
2
n
w
2
n
+
1
2
n
80
78
52
79
syl2anc
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
F
n
=
w
2
n
2
n
w
2
n
+
1
2
n
81
80
fveq2d
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
.
w
2
n
F
n
=
.
w
2
n
2
n
w
2
n
+
1
2
n
82
df-ov
⊢
w
2
n
2
n
w
2
n
+
1
2
n
=
.
w
2
n
2
n
w
2
n
+
1
2
n
83
81
82
eqtr4di
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
.
w
2
n
F
n
=
w
2
n
2
n
w
2
n
+
1
2
n
84
77
83
eleqtrrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
∈
.
w
2
n
F
n
85
fveq2
⊢
z
=
w
2
n
F
n
→
.
z
=
.
w
2
n
F
n
86
85
sseq1d
⊢
z
=
w
2
n
F
n
→
.
z
⊆
A
↔
.
w
2
n
F
n
⊆
A
87
ffn
⊢
F
:
ℤ
×
ℕ
0
⟶
≤
∩
ℝ
2
→
F
Fn
ℤ
×
ℕ
0
88
15
87
ax-mp
⊢
F
Fn
ℤ
×
ℕ
0
89
fnovrn
⊢
F
Fn
ℤ
×
ℕ
0
∧
w
2
n
∈
ℤ
∧
n
∈
ℕ
0
→
w
2
n
F
n
∈
ran
F
90
88
78
52
89
mp3an2i
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
F
n
∈
ran
F
91
simplrl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
r
∈
ℝ
+
92
91
rpred
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
r
∈
ℝ
93
49
92
resubcld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
−
r
∈
ℝ
94
93
rexrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
−
r
∈
ℝ
*
95
49
92
readdcld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
+
r
∈
ℝ
96
95
rexrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
+
r
∈
ℝ
*
97
74
92
readdcld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
+
r
∈
ℝ
98
61
recnd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
∈
ℂ
99
1cnd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
1
∈
ℂ
100
55
recnd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
2
n
∈
ℂ
101
54
nnne0d
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
2
n
≠
0
102
98
99
100
101
divdird
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
+
1
2
n
=
w
2
n
2
n
+
1
2
n
103
54
nnrecred
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
1
2
n
∈
ℝ
104
simprr
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
1
2
n
<
r
105
103
92
74
104
ltadd2dd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
+
1
2
n
<
w
2
n
2
n
+
r
106
102
105
eqbrtrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
+
1
2
n
<
w
2
n
2
n
+
r
107
49
68
97
72
106
lttrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
<
w
2
n
2
n
+
r
108
49
92
74
ltsubaddd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
−
r
<
w
2
n
2
n
↔
w
<
w
2
n
2
n
+
r
109
107
108
mpbird
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
−
r
<
w
2
n
2
n
110
49
103
readdcld
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
+
1
2
n
∈
ℝ
111
74
49
103
65
leadd1dd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
+
1
2
n
≤
w
+
1
2
n
112
102
111
eqbrtrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
+
1
2
n
≤
w
+
1
2
n
113
103
92
49
104
ltadd2dd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
+
1
2
n
<
w
+
r
114
68
110
95
112
113
lelttrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
+
1
2
n
<
w
+
r
115
iccssioo
⊢
w
−
r
∈
ℝ
*
∧
w
+
r
∈
ℝ
*
∧
w
−
r
<
w
2
n
2
n
∧
w
2
n
+
1
2
n
<
w
+
r
→
w
2
n
2
n
w
2
n
+
1
2
n
⊆
w
−
r
w
+
r
116
94
96
109
114
115
syl22anc
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
2
n
w
2
n
+
1
2
n
⊆
w
−
r
w
+
r
117
83
116
eqsstrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
.
w
2
n
F
n
⊆
w
−
r
w
+
r
118
simplrr
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
−
r
w
+
r
⊆
A
119
117
118
sstrd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
.
w
2
n
F
n
⊆
A
120
86
90
119
elrabd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
2
n
F
n
∈
z
∈
ran
F
|
.
z
⊆
A
121
funfvima2
⊢
Fun
.
∧
z
∈
ran
F
|
.
z
⊆
A
⊆
dom
.
→
w
2
n
F
n
∈
z
∈
ran
F
|
.
z
⊆
A
→
.
w
2
n
F
n
∈
.
z
∈
ran
F
|
.
z
⊆
A
122
13
24
121
mp2an
⊢
w
2
n
F
n
∈
z
∈
ran
F
|
.
z
⊆
A
→
.
w
2
n
F
n
∈
.
z
∈
ran
F
|
.
z
⊆
A
123
120
122
syl
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
.
w
2
n
F
n
∈
.
z
∈
ran
F
|
.
z
⊆
A
124
elunii
⊢
w
∈
.
w
2
n
F
n
∧
.
w
2
n
F
n
∈
.
z
∈
ran
F
|
.
z
⊆
A
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
125
84
123
124
syl2anc
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
∧
n
∈
ℕ
∧
1
2
n
<
r
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
126
48
125
rexlimddv
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
∧
w
−
r
w
+
r
⊆
A
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
127
126
expr
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
→
w
−
r
w
+
r
⊆
A
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
128
43
127
sylbid
⊢
A
∈
topGen
ran
.
∧
w
∈
A
∧
r
∈
ℝ
+
→
w
ball
abs
∘
−
↾
ℝ
2
r
⊆
A
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
129
128
rexlimdva
⊢
A
∈
topGen
ran
.
∧
w
∈
A
→
∃
r
∈
ℝ
+
w
ball
abs
∘
−
↾
ℝ
2
r
⊆
A
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
130
35
129
mpd
⊢
A
∈
topGen
ran
.
∧
w
∈
A
→
w
∈
⋃
.
z
∈
ran
F
|
.
z
⊆
A
131
29
130
eqelssd
⊢
A
∈
topGen
ran
.
→
⋃
.
z
∈
ran
F
|
.
z
⊆
A
=
A
132
fveq2
⊢
c
=
a
→
.
c
=
.
a
133
132
sseq1d
⊢
c
=
a
→
.
c
⊆
.
b
↔
.
a
⊆
.
b
134
equequ1
⊢
c
=
a
→
c
=
b
↔
a
=
b
135
133
134
imbi12d
⊢
c
=
a
→
.
c
⊆
.
b
→
c
=
b
↔
.
a
⊆
.
b
→
a
=
b
136
135
ralbidv
⊢
c
=
a
→
∀
b
∈
z
∈
ran
F
|
.
z
⊆
A
.
c
⊆
.
b
→
c
=
b
↔
∀
b
∈
z
∈
ran
F
|
.
z
⊆
A
.
a
⊆
.
b
→
a
=
b
137
136
cbvrabv
⊢
c
∈
z
∈
ran
F
|
.
z
⊆
A
|
∀
b
∈
z
∈
ran
F
|
.
z
⊆
A
.
c
⊆
.
b
→
c
=
b
=
a
∈
z
∈
ran
F
|
.
z
⊆
A
|
∀
b
∈
z
∈
ran
F
|
.
z
⊆
A
.
a
⊆
.
b
→
a
=
b
138
14
a1i
⊢
A
∈
topGen
ran
.
→
z
∈
ran
F
|
.
z
⊆
A
⊆
ran
F
139
1
137
138
dyadmbl
⊢
A
∈
topGen
ran
.
→
⋃
.
z
∈
ran
F
|
.
z
⊆
A
∈
dom
vol
140
131
139
eqeltrrd
⊢
A
∈
topGen
ran
.
→
A
∈
dom
vol