Metamath Proof Explorer


Theorem pcopt2

Description: Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypothesis pcopt.1 P = 0 1 × Y
Assertion pcopt2 F II Cn J F 1 = Y F * 𝑝 J P ph J F

Proof

Step Hyp Ref Expression
1 pcopt.1 P = 0 1 × Y
2 1 fveq1i P 2 x 1 = 0 1 × Y 2 x 1
3 simpr F II Cn J F 1 = Y F 1 = Y
4 iiuni 0 1 = II
5 eqid J = J
6 4 5 cnf F II Cn J F : 0 1 J
7 6 adantr F II Cn J F 1 = Y F : 0 1 J
8 1elunit 1 0 1
9 ffvelrn F : 0 1 J 1 0 1 F 1 J
10 7 8 9 sylancl F II Cn J F 1 = Y F 1 J
11 3 10 eqeltrrd F II Cn J F 1 = Y Y J
12 elii2 x 0 1 ¬ x 1 2 x 1 2 1
13 iihalf2 x 1 2 1 2 x 1 0 1
14 12 13 syl x 0 1 ¬ x 1 2 2 x 1 0 1
15 fvconst2g Y J 2 x 1 0 1 0 1 × Y 2 x 1 = Y
16 11 14 15 syl2an F II Cn J F 1 = Y x 0 1 ¬ x 1 2 0 1 × Y 2 x 1 = Y
17 2 16 eqtrid F II Cn J F 1 = Y x 0 1 ¬ x 1 2 P 2 x 1 = Y
18 simplr F II Cn J F 1 = Y x 0 1 ¬ x 1 2 F 1 = Y
19 17 18 eqtr4d F II Cn J F 1 = Y x 0 1 ¬ x 1 2 P 2 x 1 = F 1
20 19 anassrs F II Cn J F 1 = Y x 0 1 ¬ x 1 2 P 2 x 1 = F 1
21 20 ifeq2da F II Cn J F 1 = Y x 0 1 if x 1 2 F 2 x P 2 x 1 = if x 1 2 F 2 x F 1
22 21 mpteq2dva F II Cn J F 1 = Y x 0 1 if x 1 2 F 2 x P 2 x 1 = x 0 1 if x 1 2 F 2 x F 1
23 simpl F II Cn J F 1 = Y F II Cn J
24 cntop2 F II Cn J J Top
25 24 adantr F II Cn J F 1 = Y J Top
26 toptopon2 J Top J TopOn J
27 25 26 sylib F II Cn J F 1 = Y J TopOn J
28 1 pcoptcl J TopOn J Y J P II Cn J P 0 = Y P 1 = Y
29 27 11 28 syl2anc F II Cn J F 1 = Y P II Cn J P 0 = Y P 1 = Y
30 29 simp1d F II Cn J F 1 = Y P II Cn J
31 23 30 pcoval F II Cn J F 1 = Y F * 𝑝 J P = x 0 1 if x 1 2 F 2 x P 2 x 1
32 iftrue x 1 2 if x 1 2 2 x 1 = 2 x
33 32 adantl x 0 1 x 1 2 if x 1 2 2 x 1 = 2 x
34 elii1 x 0 1 2 x 0 1 x 1 2
35 iihalf1 x 0 1 2 2 x 0 1
36 34 35 sylbir x 0 1 x 1 2 2 x 0 1
37 33 36 eqeltrd x 0 1 x 1 2 if x 1 2 2 x 1 0 1
38 37 ex x 0 1 x 1 2 if x 1 2 2 x 1 0 1
39 iffalse ¬ x 1 2 if x 1 2 2 x 1 = 1
40 39 8 eqeltrdi ¬ x 1 2 if x 1 2 2 x 1 0 1
41 38 40 pm2.61d1 x 0 1 if x 1 2 2 x 1 0 1
42 41 adantl F II Cn J F 1 = Y x 0 1 if x 1 2 2 x 1 0 1
43 eqidd F II Cn J F 1 = Y x 0 1 if x 1 2 2 x 1 = x 0 1 if x 1 2 2 x 1
44 7 feqmptd F II Cn J F 1 = Y F = y 0 1 F y
45 fveq2 y = if x 1 2 2 x 1 F y = F if x 1 2 2 x 1
46 fvif F if x 1 2 2 x 1 = if x 1 2 F 2 x F 1
47 45 46 eqtrdi y = if x 1 2 2 x 1 F y = if x 1 2 F 2 x F 1
48 42 43 44 47 fmptco F II Cn J F 1 = Y F x 0 1 if x 1 2 2 x 1 = x 0 1 if x 1 2 F 2 x F 1
49 22 31 48 3eqtr4d F II Cn J F 1 = Y F * 𝑝 J P = F x 0 1 if x 1 2 2 x 1
50 iitopon II TopOn 0 1
51 50 a1i F II Cn J F 1 = Y II TopOn 0 1
52 51 cnmptid F II Cn J F 1 = Y x 0 1 x II Cn II
53 0elunit 0 0 1
54 53 a1i F II Cn J F 1 = Y 0 0 1
55 51 51 54 cnmptc F II Cn J F 1 = Y x 0 1 0 II Cn II
56 eqid topGen ran . = topGen ran .
57 eqid topGen ran . 𝑡 0 1 2 = topGen ran . 𝑡 0 1 2
58 eqid topGen ran . 𝑡 1 2 1 = topGen ran . 𝑡 1 2 1
59 dfii2 II = topGen ran . 𝑡 0 1
60 0re 0
61 60 a1i F II Cn J F 1 = Y 0
62 1re 1
63 62 a1i F II Cn J F 1 = Y 1
64 halfre 1 2
65 halfge0 0 1 2
66 halflt1 1 2 < 1
67 64 62 66 ltleii 1 2 1
68 elicc01 1 2 0 1 1 2 0 1 2 1 2 1
69 64 65 67 68 mpbir3an 1 2 0 1
70 69 a1i F II Cn J F 1 = Y 1 2 0 1
71 simprl F II Cn J F 1 = Y y = 1 2 z 0 1 y = 1 2
72 71 oveq2d F II Cn J F 1 = Y y = 1 2 z 0 1 2 y = 2 1 2
73 2cn 2
74 2ne0 2 0
75 73 74 recidi 2 1 2 = 1
76 72 75 eqtrdi F II Cn J F 1 = Y y = 1 2 z 0 1 2 y = 1
77 retopon topGen ran . TopOn
78 iccssre 0 1 2 0 1 2
79 60 64 78 mp2an 0 1 2
80 resttopon topGen ran . TopOn 0 1 2 topGen ran . 𝑡 0 1 2 TopOn 0 1 2
81 77 79 80 mp2an topGen ran . 𝑡 0 1 2 TopOn 0 1 2
82 81 a1i F II Cn J F 1 = Y topGen ran . 𝑡 0 1 2 TopOn 0 1 2
83 82 51 cnmpt1st F II Cn J F 1 = Y y 0 1 2 , z 0 1 y topGen ran . 𝑡 0 1 2 × t II Cn topGen ran . 𝑡 0 1 2
84 57 iihalf1cn x 0 1 2 2 x topGen ran . 𝑡 0 1 2 Cn II
85 84 a1i F II Cn J F 1 = Y x 0 1 2 2 x topGen ran . 𝑡 0 1 2 Cn II
86 oveq2 x = y 2 x = 2 y
87 82 51 83 82 85 86 cnmpt21 F II Cn J F 1 = Y y 0 1 2 , z 0 1 2 y topGen ran . 𝑡 0 1 2 × t II Cn II
88 iccssre 1 2 1 1 2 1
89 64 62 88 mp2an 1 2 1
90 resttopon topGen ran . TopOn 1 2 1 topGen ran . 𝑡 1 2 1 TopOn 1 2 1
91 77 89 90 mp2an topGen ran . 𝑡 1 2 1 TopOn 1 2 1
92 91 a1i F II Cn J F 1 = Y topGen ran . 𝑡 1 2 1 TopOn 1 2 1
93 8 a1i F II Cn J F 1 = Y 1 0 1
94 92 51 51 93 cnmpt2c F II Cn J F 1 = Y y 1 2 1 , z 0 1 1 topGen ran . 𝑡 1 2 1 × t II Cn II
95 56 57 58 59 61 63 70 51 76 87 94 cnmpopc F II Cn J F 1 = Y y 0 1 , z 0 1 if y 1 2 2 y 1 II × t II Cn II
96 breq1 y = x y 1 2 x 1 2
97 oveq2 y = x 2 y = 2 x
98 96 97 ifbieq1d y = x if y 1 2 2 y 1 = if x 1 2 2 x 1
99 98 adantr y = x z = 0 if y 1 2 2 y 1 = if x 1 2 2 x 1
100 51 52 55 51 51 95 99 cnmpt12 F II Cn J F 1 = Y x 0 1 if x 1 2 2 x 1 II Cn II
101 id x = 0 x = 0
102 101 65 eqbrtrdi x = 0 x 1 2
103 102 32 syl x = 0 if x 1 2 2 x 1 = 2 x
104 oveq2 x = 0 2 x = 2 0
105 2t0e0 2 0 = 0
106 104 105 eqtrdi x = 0 2 x = 0
107 103 106 eqtrd x = 0 if x 1 2 2 x 1 = 0
108 eqid x 0 1 if x 1 2 2 x 1 = x 0 1 if x 1 2 2 x 1
109 c0ex 0 V
110 107 108 109 fvmpt 0 0 1 x 0 1 if x 1 2 2 x 1 0 = 0
111 53 110 mp1i F II Cn J F 1 = Y x 0 1 if x 1 2 2 x 1 0 = 0
112 64 62 ltnlei 1 2 < 1 ¬ 1 1 2
113 66 112 mpbi ¬ 1 1 2
114 breq1 x = 1 x 1 2 1 1 2
115 113 114 mtbiri x = 1 ¬ x 1 2
116 115 39 syl x = 1 if x 1 2 2 x 1 = 1
117 1ex 1 V
118 116 108 117 fvmpt 1 0 1 x 0 1 if x 1 2 2 x 1 1 = 1
119 8 118 mp1i F II Cn J F 1 = Y x 0 1 if x 1 2 2 x 1 1 = 1
120 23 100 111 119 reparpht F II Cn J F 1 = Y F x 0 1 if x 1 2 2 x 1 ph J F
121 49 120 eqbrtrd F II Cn J F 1 = Y F * 𝑝 J P ph J F