Metamath Proof Explorer


Theorem pcopt2

Description: Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypothesis pcopt.1 P=01×Y
Assertion pcopt2 FIICnJF1=YF*𝑝JPphJF

Proof

Step Hyp Ref Expression
1 pcopt.1 P=01×Y
2 1 fveq1i P2x1=01×Y2x1
3 simpr FIICnJF1=YF1=Y
4 iiuni 01=II
5 eqid J=J
6 4 5 cnf FIICnJF:01J
7 6 adantr FIICnJF1=YF:01J
8 1elunit 101
9 ffvelcdm F:01J101F1J
10 7 8 9 sylancl FIICnJF1=YF1J
11 3 10 eqeltrrd FIICnJF1=YYJ
12 elii2 x01¬x12x121
13 iihalf2 x1212x101
14 12 13 syl x01¬x122x101
15 fvconst2g YJ2x10101×Y2x1=Y
16 11 14 15 syl2an FIICnJF1=Yx01¬x1201×Y2x1=Y
17 2 16 eqtrid FIICnJF1=Yx01¬x12P2x1=Y
18 simplr FIICnJF1=Yx01¬x12F1=Y
19 17 18 eqtr4d FIICnJF1=Yx01¬x12P2x1=F1
20 19 anassrs FIICnJF1=Yx01¬x12P2x1=F1
21 20 ifeq2da FIICnJF1=Yx01ifx12F2xP2x1=ifx12F2xF1
22 21 mpteq2dva FIICnJF1=Yx01ifx12F2xP2x1=x01ifx12F2xF1
23 simpl FIICnJF1=YFIICnJ
24 cntop2 FIICnJJTop
25 24 adantr FIICnJF1=YJTop
26 toptopon2 JTopJTopOnJ
27 25 26 sylib FIICnJF1=YJTopOnJ
28 1 pcoptcl JTopOnJYJPIICnJP0=YP1=Y
29 27 11 28 syl2anc FIICnJF1=YPIICnJP0=YP1=Y
30 29 simp1d FIICnJF1=YPIICnJ
31 23 30 pcoval FIICnJF1=YF*𝑝JP=x01ifx12F2xP2x1
32 iftrue x12ifx122x1=2x
33 32 adantl x01x12ifx122x1=2x
34 elii1 x012x01x12
35 iihalf1 x0122x01
36 34 35 sylbir x01x122x01
37 33 36 eqeltrd x01x12ifx122x101
38 37 ex x01x12ifx122x101
39 iffalse ¬x12ifx122x1=1
40 39 8 eqeltrdi ¬x12ifx122x101
41 38 40 pm2.61d1 x01ifx122x101
42 41 adantl FIICnJF1=Yx01ifx122x101
43 eqidd FIICnJF1=Yx01ifx122x1=x01ifx122x1
44 7 feqmptd FIICnJF1=YF=y01Fy
45 fveq2 y=ifx122x1Fy=Fifx122x1
46 fvif Fifx122x1=ifx12F2xF1
47 45 46 eqtrdi y=ifx122x1Fy=ifx12F2xF1
48 42 43 44 47 fmptco FIICnJF1=YFx01ifx122x1=x01ifx12F2xF1
49 22 31 48 3eqtr4d FIICnJF1=YF*𝑝JP=Fx01ifx122x1
50 iitopon IITopOn01
51 50 a1i FIICnJF1=YIITopOn01
52 51 cnmptid FIICnJF1=Yx01xIICnII
53 0elunit 001
54 53 a1i FIICnJF1=Y001
55 51 51 54 cnmptc FIICnJF1=Yx010IICnII
56 eqid topGenran.=topGenran.
57 eqid topGenran.𝑡012=topGenran.𝑡012
58 eqid topGenran.𝑡121=topGenran.𝑡121
59 dfii2 II=topGenran.𝑡01
60 0re 0
61 60 a1i FIICnJF1=Y0
62 1re 1
63 62 a1i FIICnJF1=Y1
64 halfre 12
65 halfge0 012
66 halflt1 12<1
67 64 62 66 ltleii 121
68 elicc01 120112012121
69 64 65 67 68 mpbir3an 1201
70 69 a1i FIICnJF1=Y1201
71 simprl FIICnJF1=Yy=12z01y=12
72 71 oveq2d FIICnJF1=Yy=12z012y=212
73 2cn 2
74 2ne0 20
75 73 74 recidi 212=1
76 72 75 eqtrdi FIICnJF1=Yy=12z012y=1
77 retopon topGenran.TopOn
78 iccssre 012012
79 60 64 78 mp2an 012
80 resttopon topGenran.TopOn012topGenran.𝑡012TopOn012
81 77 79 80 mp2an topGenran.𝑡012TopOn012
82 81 a1i FIICnJF1=YtopGenran.𝑡012TopOn012
83 82 51 cnmpt1st FIICnJF1=Yy012,z01ytopGenran.𝑡012×tIICntopGenran.𝑡012
84 57 iihalf1cn x0122xtopGenran.𝑡012CnII
85 84 a1i FIICnJF1=Yx0122xtopGenran.𝑡012CnII
86 oveq2 x=y2x=2y
87 82 51 83 82 85 86 cnmpt21 FIICnJF1=Yy012,z012ytopGenran.𝑡012×tIICnII
88 iccssre 121121
89 64 62 88 mp2an 121
90 resttopon topGenran.TopOn121topGenran.𝑡121TopOn121
91 77 89 90 mp2an topGenran.𝑡121TopOn121
92 91 a1i FIICnJF1=YtopGenran.𝑡121TopOn121
93 8 a1i FIICnJF1=Y101
94 92 51 51 93 cnmpt2c FIICnJF1=Yy121,z011topGenran.𝑡121×tIICnII
95 56 57 58 59 61 63 70 51 76 87 94 cnmpopc FIICnJF1=Yy01,z01ify122y1II×tIICnII
96 breq1 y=xy12x12
97 oveq2 y=x2y=2x
98 96 97 ifbieq1d y=xify122y1=ifx122x1
99 98 adantr y=xz=0ify122y1=ifx122x1
100 51 52 55 51 51 95 99 cnmpt12 FIICnJF1=Yx01ifx122x1IICnII
101 id x=0x=0
102 101 65 eqbrtrdi x=0x12
103 102 32 syl x=0ifx122x1=2x
104 oveq2 x=02x=20
105 2t0e0 20=0
106 104 105 eqtrdi x=02x=0
107 103 106 eqtrd x=0ifx122x1=0
108 eqid x01ifx122x1=x01ifx122x1
109 c0ex 0V
110 107 108 109 fvmpt 001x01ifx122x10=0
111 53 110 mp1i FIICnJF1=Yx01ifx122x10=0
112 64 62 ltnlei 12<1¬112
113 66 112 mpbi ¬112
114 breq1 x=1x12112
115 113 114 mtbiri x=1¬x12
116 115 39 syl x=1ifx122x1=1
117 1ex 1V
118 116 108 117 fvmpt 101x01ifx122x11=1
119 8 118 mp1i FIICnJF1=Yx01ifx122x11=1
120 23 100 111 119 reparpht FIICnJF1=YFx01ifx122x1phJF
121 49 120 eqbrtrd FIICnJF1=YF*𝑝JPphJF