Metamath Proof Explorer


Theorem pntibndlem3

Description: Lemma for pntibnd . Package up pntibndlem2 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypotheses pntibnd.r R = a + ψ a a
pntibndlem1.1 φ A +
pntibndlem1.l L = 1 4 A + 3
pntibndlem3.2 φ x + R x x A
pntibndlem3.3 φ B +
pntibndlem3.k K = e B E 2
pntibndlem3.c C = 2 B + log 2
pntibndlem3.4 φ E 0 1
pntibndlem3.6 φ Z +
pntibndlem3.5 φ m K +∞ v Z +∞ i v < i i m v R i i E 2
Assertion pntibndlem3 φ x + k e C E +∞ y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E

Proof

Step Hyp Ref Expression
1 pntibnd.r R = a + ψ a a
2 pntibndlem1.1 φ A +
3 pntibndlem1.l L = 1 4 A + 3
4 pntibndlem3.2 φ x + R x x A
5 pntibndlem3.3 φ B +
6 pntibndlem3.k K = e B E 2
7 pntibndlem3.c C = 2 B + log 2
8 pntibndlem3.4 φ E 0 1
9 pntibndlem3.6 φ Z +
10 pntibndlem3.5 φ m K +∞ v Z +∞ i v < i i m v R i i E 2
11 2re 2
12 1le2 1 2
13 chpdifbnd 2 1 2 t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v
14 11 12 13 mp2an t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v
15 simpr φ t + t +
16 ioossre 0 1
17 16 8 sselid φ E
18 eliooord E 0 1 0 < E E < 1
19 8 18 syl φ 0 < E E < 1
20 19 simpld φ 0 < E
21 17 20 elrpd φ E +
22 21 adantr φ t + E +
23 4nn 4
24 nnrp 4 4 +
25 23 24 ax-mp 4 +
26 rpdivcl E + 4 + E 4 +
27 22 25 26 sylancl φ t + E 4 +
28 15 27 rpdivcld φ t + t E 4 +
29 28 rpred φ t + t E 4
30 29 rpefcld φ t + e t E 4 +
31 9 adantr φ t + Z +
32 30 31 rpaddcld φ t + e t E 4 + Z +
33 32 adantrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v e t E 4 + Z +
34 breq2 i = n v < i v < n
35 breq1 i = n i k 2 v n k 2 v
36 34 35 anbi12d i = n v < i i k 2 v v < n n k 2 v
37 fveq2 i = n R i = R n
38 id i = n i = n
39 37 38 oveq12d i = n R i i = R n n
40 39 fveq2d i = n R i i = R n n
41 40 breq1d i = n R i i E 2 R n n E 2
42 36 41 anbi12d i = n v < i i k 2 v R i i E 2 v < n n k 2 v R n n E 2
43 42 cbvrexvw i v < i i k 2 v R i i E 2 n v < n n k 2 v R n n E 2
44 breq1 v = y v < n y < n
45 oveq2 v = y k 2 v = k 2 y
46 45 breq2d v = y n k 2 v n k 2 y
47 44 46 anbi12d v = y v < n n k 2 v y < n n k 2 y
48 47 anbi1d v = y v < n n k 2 v R n n E 2 y < n n k 2 y R n n E 2
49 48 rexbidv v = y n v < n n k 2 v R n n E 2 n y < n n k 2 y R n n E 2
50 43 49 syl5bb v = y i v < i i k 2 v R i i E 2 n y < n n k 2 y R n n E 2
51 oveq1 m = k 2 m v = k 2 v
52 51 breq2d m = k 2 i m v i k 2 v
53 52 anbi2d m = k 2 v < i i m v v < i i k 2 v
54 53 anbi1d m = k 2 v < i i m v R i i E 2 v < i i k 2 v R i i E 2
55 54 rexbidv m = k 2 i v < i i m v R i i E 2 i v < i i k 2 v R i i E 2
56 55 ralbidv m = k 2 v Z +∞ i v < i i m v R i i E 2 v Z +∞ i v < i i k 2 v R i i E 2
57 10 ad2antrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ m K +∞ v Z +∞ i v < i i m v R i i E 2
58 5 adantr φ t + B +
59 58 rpred φ t + B
60 remulcl 2 B 2 B
61 11 59 60 sylancr φ t + 2 B
62 2rp 2 +
63 relogcl 2 + log 2
64 62 63 ax-mp log 2
65 readdcl 2 B log 2 2 B + log 2
66 61 64 65 sylancl φ t + 2 B + log 2
67 7 66 eqeltrid φ t + C
68 67 22 rerpdivcld φ t + C E
69 68 reefcld φ t + e C E
70 elicopnf e C E k e C E +∞ k e C E k
71 69 70 syl φ t + k e C E +∞ k e C E k
72 71 simprbda φ t + k e C E +∞ k
73 72 rehalfcld φ t + k e C E +∞ k 2
74 22 rphalfcld φ t + E 2 +
75 59 74 rerpdivcld φ t + B E 2
76 75 reefcld φ t + e B E 2
77 remulcl e B E 2 2 e B E 2 2
78 76 11 77 sylancl φ t + e B E 2 2
79 78 adantr φ t + k e C E +∞ e B E 2 2
80 69 adantr φ t + k e C E +∞ e C E
81 75 recnd φ t + B E 2
82 64 recni log 2
83 efadd B E 2 log 2 e B E 2 + log 2 = e B E 2 e log 2
84 81 82 83 sylancl φ t + e B E 2 + log 2 = e B E 2 e log 2
85 reeflog 2 + e log 2 = 2
86 62 85 ax-mp e log 2 = 2
87 86 oveq2i e B E 2 e log 2 = e B E 2 2
88 84 87 eqtrdi φ t + e B E 2 + log 2 = e B E 2 2
89 64 a1i φ t + log 2
90 rerpdivcl log 2 E + log 2 E
91 64 22 90 sylancr φ t + log 2 E
92 82 div1i log 2 1 = log 2
93 19 simprd φ E < 1
94 93 adantr φ t + E < 1
95 17 adantr φ t + E
96 1re 1
97 ltle E 1 E < 1 E 1
98 95 96 97 sylancl φ t + E < 1 E 1
99 94 98 mpd φ t + E 1
100 22 rpregt0d φ t + E 0 < E
101 1rp 1 +
102 rpregt0 1 + 1 0 < 1
103 101 102 mp1i φ t + 1 0 < 1
104 1lt2 1 < 2
105 rplogcl 2 1 < 2 log 2 +
106 11 104 105 mp2an log 2 +
107 rpregt0 log 2 + log 2 0 < log 2
108 106 107 mp1i φ t + log 2 0 < log 2
109 lediv2 E 0 < E 1 0 < 1 log 2 0 < log 2 E 1 log 2 1 log 2 E
110 100 103 108 109 syl3anc φ t + E 1 log 2 1 log 2 E
111 99 110 mpbid φ t + log 2 1 log 2 E
112 92 111 eqbrtrrid φ t + log 2 log 2 E
113 89 91 75 112 leadd2dd φ t + B E 2 + log 2 B E 2 + log 2 E
114 7 oveq1i C E = 2 B + log 2 E
115 61 recnd φ t + 2 B
116 82 a1i φ t + log 2
117 rpcnne0 E + E E 0
118 22 117 syl φ t + E E 0
119 divdir 2 B log 2 E E 0 2 B + log 2 E = 2 B E + log 2 E
120 115 116 118 119 syl3anc φ t + 2 B + log 2 E = 2 B E + log 2 E
121 114 120 eqtrid φ t + C E = 2 B E + log 2 E
122 11 recni 2
123 59 recnd φ t + B
124 mulcom 2 B 2 B = B 2
125 122 123 124 sylancr φ t + 2 B = B 2
126 125 oveq1d φ t + 2 B E = B 2 E
127 rpcnne0 2 + 2 2 0
128 62 127 mp1i φ t + 2 2 0
129 divdiv2 B E E 0 2 2 0 B E 2 = B 2 E
130 123 118 128 129 syl3anc φ t + B E 2 = B 2 E
131 126 130 eqtr4d φ t + 2 B E = B E 2
132 131 oveq1d φ t + 2 B E + log 2 E = B E 2 + log 2 E
133 121 132 eqtrd φ t + C E = B E 2 + log 2 E
134 113 133 breqtrrd φ t + B E 2 + log 2 C E
135 readdcl B E 2 log 2 B E 2 + log 2
136 75 64 135 sylancl φ t + B E 2 + log 2
137 efle B E 2 + log 2 C E B E 2 + log 2 C E e B E 2 + log 2 e C E
138 136 68 137 syl2anc φ t + B E 2 + log 2 C E e B E 2 + log 2 e C E
139 134 138 mpbid φ t + e B E 2 + log 2 e C E
140 88 139 eqbrtrrd φ t + e B E 2 2 e C E
141 140 adantr φ t + k e C E +∞ e B E 2 2 e C E
142 71 simplbda φ t + k e C E +∞ e C E k
143 79 80 72 141 142 letrd φ t + k e C E +∞ e B E 2 2 k
144 76 adantr φ t + k e C E +∞ e B E 2
145 rpregt0 2 + 2 0 < 2
146 62 145 mp1i φ t + k e C E +∞ 2 0 < 2
147 lemuldiv e B E 2 k 2 0 < 2 e B E 2 2 k e B E 2 k 2
148 144 72 146 147 syl3anc φ t + k e C E +∞ e B E 2 2 k e B E 2 k 2
149 143 148 mpbid φ t + k e C E +∞ e B E 2 k 2
150 6 149 eqbrtrid φ t + k e C E +∞ K k 2
151 6 144 eqeltrid φ t + k e C E +∞ K
152 elicopnf K k 2 K +∞ k 2 K k 2
153 151 152 syl φ t + k e C E +∞ k 2 K +∞ k 2 K k 2
154 73 150 153 mpbir2and φ t + k e C E +∞ k 2 K +∞
155 154 adantrr φ t + k e C E +∞ y e t E 4 + Z +∞ k 2 K +∞
156 155 adantlrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ k 2 K +∞
157 56 57 156 rspcdva φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ v Z +∞ i v < i i k 2 v R i i E 2
158 elioore y e t E 4 + Z +∞ y
159 158 ad2antll φ t + k e C E +∞ y e t E 4 + Z +∞ y
160 31 rpred φ t + Z
161 160 adantr φ t + k e C E +∞ y e t E 4 + Z +∞ Z
162 29 reefcld φ t + e t E 4
163 162 160 readdcld φ t + e t E 4 + Z
164 163 adantr φ t + k e C E +∞ y e t E 4 + Z +∞ e t E 4 + Z
165 160 30 ltaddrp2d φ t + Z < e t E 4 + Z
166 165 adantr φ t + k e C E +∞ y e t E 4 + Z +∞ Z < e t E 4 + Z
167 eliooord y e t E 4 + Z +∞ e t E 4 + Z < y y < +∞
168 167 simpld y e t E 4 + Z +∞ e t E 4 + Z < y
169 168 ad2antll φ t + k e C E +∞ y e t E 4 + Z +∞ e t E 4 + Z < y
170 161 164 159 166 169 lttrd φ t + k e C E +∞ y e t E 4 + Z +∞ Z < y
171 161 rexrd φ t + k e C E +∞ y e t E 4 + Z +∞ Z *
172 elioopnf Z * y Z +∞ y Z < y
173 171 172 syl φ t + k e C E +∞ y e t E 4 + Z +∞ y Z +∞ y Z < y
174 159 170 173 mpbir2and φ t + k e C E +∞ y e t E 4 + Z +∞ y Z +∞
175 174 adantlrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ y Z +∞
176 50 157 175 rspcdva φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2
177 2 ad2antrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 A +
178 fveq2 x = v R x = R v
179 id x = v x = v
180 178 179 oveq12d x = v R x x = R v v
181 180 fveq2d x = v R x x = R v v
182 181 breq1d x = v R x x A R v v A
183 182 cbvralvw x + R x x A v + R v v A
184 4 183 sylib φ v + R v v A
185 184 ad2antrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 v + R v v A
186 5 ad2antrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 B +
187 8 ad2antrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 E 0 1
188 9 ad2antrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 Z +
189 simprrl φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 n
190 simplrl φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 t +
191 simplrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v
192 eqid e t E 4 + Z = e t E 4 + Z
193 simprll φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 k e C E +∞
194 simprlr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 y e t E 4 + Z +∞
195 simprrr φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 y < n n k 2 y R n n E 2
196 1 177 3 185 186 6 7 187 188 189 190 191 192 193 194 195 pntibndlem2 φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 z + y < z 1 + L E z < k y u z 1 + L E z R u u E
197 196 anassrs φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ n y < n n k 2 y R n n E 2 z + y < z 1 + L E z < k y u z 1 + L E z R u u E
198 176 197 rexlimddv φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
199 198 ralrimivva φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v k e C E +∞ y e t E 4 + Z +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
200 oveq1 x = e t E 4 + Z x +∞ = e t E 4 + Z +∞
201 200 raleqdv x = e t E 4 + Z y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E y e t E 4 + Z +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
202 201 ralbidv x = e t E 4 + Z k e C E +∞ y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E k e C E +∞ y e t E 4 + Z +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
203 202 rspcev e t E 4 + Z + k e C E +∞ y e t E 4 + Z +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E x + k e C E +∞ y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
204 33 199 203 syl2anc φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v x + k e C E +∞ y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
205 204 rexlimdvaa φ t + v 1 +∞ w v 2 v ψ w ψ v 2 w v + t v log v x + k e C E +∞ y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E
206 14 205 mpi φ x + k e C E +∞ y x +∞ z + y < z 1 + L E z < k y u z 1 + L E z R u u E