Metamath Proof Explorer


Theorem pntibndlem3

Description: Lemma for pntibnd . Package up pntibndlem2 in quantifiers. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypotheses pntibnd.r R=a+ψaa
pntibndlem1.1 φA+
pntibndlem1.l L=14A+3
pntibndlem3.2 φx+RxxA
pntibndlem3.3 φB+
pntibndlem3.k K=eBE2
pntibndlem3.c C=2B+log2
pntibndlem3.4 φE01
pntibndlem3.6 φZ+
pntibndlem3.5 φmK+∞vZ+∞iv<iimvRiiE2
Assertion pntibndlem3 φx+keCE+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE

Proof

Step Hyp Ref Expression
1 pntibnd.r R=a+ψaa
2 pntibndlem1.1 φA+
3 pntibndlem1.l L=14A+3
4 pntibndlem3.2 φx+RxxA
5 pntibndlem3.3 φB+
6 pntibndlem3.k K=eBE2
7 pntibndlem3.c C=2B+log2
8 pntibndlem3.4 φE01
9 pntibndlem3.6 φZ+
10 pntibndlem3.5 φmK+∞vZ+∞iv<iimvRiiE2
11 2re 2
12 1le2 12
13 chpdifbnd 212t+v1+∞wv2vψwψv2wv+tvlogv
14 11 12 13 mp2an t+v1+∞wv2vψwψv2wv+tvlogv
15 simpr φt+t+
16 ioossre 01
17 16 8 sselid φE
18 eliooord E010<EE<1
19 8 18 syl φ0<EE<1
20 19 simpld φ0<E
21 17 20 elrpd φE+
22 21 adantr φt+E+
23 4nn 4
24 nnrp 44+
25 23 24 ax-mp 4+
26 rpdivcl E+4+E4+
27 22 25 26 sylancl φt+E4+
28 15 27 rpdivcld φt+tE4+
29 28 rpred φt+tE4
30 29 rpefcld φt+etE4+
31 9 adantr φt+Z+
32 30 31 rpaddcld φt+etE4+Z+
33 32 adantrr φt+v1+∞wv2vψwψv2wv+tvlogvetE4+Z+
34 breq2 i=nv<iv<n
35 breq1 i=nik2vnk2v
36 34 35 anbi12d i=nv<iik2vv<nnk2v
37 fveq2 i=nRi=Rn
38 id i=ni=n
39 37 38 oveq12d i=nRii=Rnn
40 39 fveq2d i=nRii=Rnn
41 40 breq1d i=nRiiE2RnnE2
42 36 41 anbi12d i=nv<iik2vRiiE2v<nnk2vRnnE2
43 42 cbvrexvw iv<iik2vRiiE2nv<nnk2vRnnE2
44 breq1 v=yv<ny<n
45 oveq2 v=yk2v=k2y
46 45 breq2d v=ynk2vnk2y
47 44 46 anbi12d v=yv<nnk2vy<nnk2y
48 47 anbi1d v=yv<nnk2vRnnE2y<nnk2yRnnE2
49 48 rexbidv v=ynv<nnk2vRnnE2ny<nnk2yRnnE2
50 43 49 bitrid v=yiv<iik2vRiiE2ny<nnk2yRnnE2
51 oveq1 m=k2mv=k2v
52 51 breq2d m=k2imvik2v
53 52 anbi2d m=k2v<iimvv<iik2v
54 53 anbi1d m=k2v<iimvRiiE2v<iik2vRiiE2
55 54 rexbidv m=k2iv<iimvRiiE2iv<iik2vRiiE2
56 55 ralbidv m=k2vZ+∞iv<iimvRiiE2vZ+∞iv<iik2vRiiE2
57 10 ad2antrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞mK+∞vZ+∞iv<iimvRiiE2
58 5 adantr φt+B+
59 58 rpred φt+B
60 remulcl 2B2B
61 11 59 60 sylancr φt+2B
62 2rp 2+
63 relogcl 2+log2
64 62 63 ax-mp log2
65 readdcl 2Blog22B+log2
66 61 64 65 sylancl φt+2B+log2
67 7 66 eqeltrid φt+C
68 67 22 rerpdivcld φt+CE
69 68 reefcld φt+eCE
70 elicopnf eCEkeCE+∞keCEk
71 69 70 syl φt+keCE+∞keCEk
72 71 simprbda φt+keCE+∞k
73 72 rehalfcld φt+keCE+∞k2
74 22 rphalfcld φt+E2+
75 59 74 rerpdivcld φt+BE2
76 75 reefcld φt+eBE2
77 remulcl eBE22eBE22
78 76 11 77 sylancl φt+eBE22
79 78 adantr φt+keCE+∞eBE22
80 69 adantr φt+keCE+∞eCE
81 75 recnd φt+BE2
82 64 recni log2
83 efadd BE2log2eBE2+log2=eBE2elog2
84 81 82 83 sylancl φt+eBE2+log2=eBE2elog2
85 reeflog 2+elog2=2
86 62 85 ax-mp elog2=2
87 86 oveq2i eBE2elog2=eBE22
88 84 87 eqtrdi φt+eBE2+log2=eBE22
89 64 a1i φt+log2
90 rerpdivcl log2E+log2E
91 64 22 90 sylancr φt+log2E
92 82 div1i log21=log2
93 19 simprd φE<1
94 93 adantr φt+E<1
95 17 adantr φt+E
96 1re 1
97 ltle E1E<1E1
98 95 96 97 sylancl φt+E<1E1
99 94 98 mpd φt+E1
100 22 rpregt0d φt+E0<E
101 1rp 1+
102 rpregt0 1+10<1
103 101 102 mp1i φt+10<1
104 1lt2 1<2
105 rplogcl 21<2log2+
106 11 104 105 mp2an log2+
107 rpregt0 log2+log20<log2
108 106 107 mp1i φt+log20<log2
109 lediv2 E0<E10<1log20<log2E1log21log2E
110 100 103 108 109 syl3anc φt+E1log21log2E
111 99 110 mpbid φt+log21log2E
112 92 111 eqbrtrrid φt+log2log2E
113 89 91 75 112 leadd2dd φt+BE2+log2BE2+log2E
114 7 oveq1i CE=2B+log2E
115 61 recnd φt+2B
116 82 a1i φt+log2
117 rpcnne0 E+EE0
118 22 117 syl φt+EE0
119 divdir 2Blog2EE02B+log2E=2BE+log2E
120 115 116 118 119 syl3anc φt+2B+log2E=2BE+log2E
121 114 120 eqtrid φt+CE=2BE+log2E
122 11 recni 2
123 59 recnd φt+B
124 mulcom 2B2B=B2
125 122 123 124 sylancr φt+2B=B2
126 125 oveq1d φt+2BE=B2E
127 rpcnne0 2+220
128 62 127 mp1i φt+220
129 divdiv2 BEE0220BE2=B2E
130 123 118 128 129 syl3anc φt+BE2=B2E
131 126 130 eqtr4d φt+2BE=BE2
132 131 oveq1d φt+2BE+log2E=BE2+log2E
133 121 132 eqtrd φt+CE=BE2+log2E
134 113 133 breqtrrd φt+BE2+log2CE
135 readdcl BE2log2BE2+log2
136 75 64 135 sylancl φt+BE2+log2
137 efle BE2+log2CEBE2+log2CEeBE2+log2eCE
138 136 68 137 syl2anc φt+BE2+log2CEeBE2+log2eCE
139 134 138 mpbid φt+eBE2+log2eCE
140 88 139 eqbrtrrd φt+eBE22eCE
141 140 adantr φt+keCE+∞eBE22eCE
142 71 simplbda φt+keCE+∞eCEk
143 79 80 72 141 142 letrd φt+keCE+∞eBE22k
144 76 adantr φt+keCE+∞eBE2
145 rpregt0 2+20<2
146 62 145 mp1i φt+keCE+∞20<2
147 lemuldiv eBE2k20<2eBE22keBE2k2
148 144 72 146 147 syl3anc φt+keCE+∞eBE22keBE2k2
149 143 148 mpbid φt+keCE+∞eBE2k2
150 6 149 eqbrtrid φt+keCE+∞Kk2
151 6 144 eqeltrid φt+keCE+∞K
152 elicopnf Kk2K+∞k2Kk2
153 151 152 syl φt+keCE+∞k2K+∞k2Kk2
154 73 150 153 mpbir2and φt+keCE+∞k2K+∞
155 154 adantrr φt+keCE+∞yetE4+Z+∞k2K+∞
156 155 adantlrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞k2K+∞
157 56 57 156 rspcdva φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞vZ+∞iv<iik2vRiiE2
158 elioore yetE4+Z+∞y
159 158 ad2antll φt+keCE+∞yetE4+Z+∞y
160 31 rpred φt+Z
161 160 adantr φt+keCE+∞yetE4+Z+∞Z
162 29 reefcld φt+etE4
163 162 160 readdcld φt+etE4+Z
164 163 adantr φt+keCE+∞yetE4+Z+∞etE4+Z
165 160 30 ltaddrp2d φt+Z<etE4+Z
166 165 adantr φt+keCE+∞yetE4+Z+∞Z<etE4+Z
167 eliooord yetE4+Z+∞etE4+Z<yy<+∞
168 167 simpld yetE4+Z+∞etE4+Z<y
169 168 ad2antll φt+keCE+∞yetE4+Z+∞etE4+Z<y
170 161 164 159 166 169 lttrd φt+keCE+∞yetE4+Z+∞Z<y
171 161 rexrd φt+keCE+∞yetE4+Z+∞Z*
172 elioopnf Z*yZ+∞yZ<y
173 171 172 syl φt+keCE+∞yetE4+Z+∞yZ+∞yZ<y
174 159 170 173 mpbir2and φt+keCE+∞yetE4+Z+∞yZ+∞
175 174 adantlrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞yZ+∞
176 50 157 175 rspcdva φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2
177 2 ad2antrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2A+
178 fveq2 x=vRx=Rv
179 id x=vx=v
180 178 179 oveq12d x=vRxx=Rvv
181 180 fveq2d x=vRxx=Rvv
182 181 breq1d x=vRxxARvvA
183 182 cbvralvw x+RxxAv+RvvA
184 4 183 sylib φv+RvvA
185 184 ad2antrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2v+RvvA
186 5 ad2antrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2B+
187 8 ad2antrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2E01
188 9 ad2antrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2Z+
189 simprrl φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2n
190 simplrl φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2t+
191 simplrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2v1+∞wv2vψwψv2wv+tvlogv
192 eqid etE4+Z=etE4+Z
193 simprll φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2keCE+∞
194 simprlr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2yetE4+Z+∞
195 simprrr φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2y<nnk2yRnnE2
196 1 177 3 185 186 6 7 187 188 189 190 191 192 193 194 195 pntibndlem2 φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2z+y<z1+LEz<kyuz1+LEzRuuE
197 196 anassrs φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞ny<nnk2yRnnE2z+y<z1+LEz<kyuz1+LEzRuuE
198 176 197 rexlimddv φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞z+y<z1+LEz<kyuz1+LEzRuuE
199 198 ralrimivva φt+v1+∞wv2vψwψv2wv+tvlogvkeCE+∞yetE4+Z+∞z+y<z1+LEz<kyuz1+LEzRuuE
200 oveq1 x=etE4+Zx+∞=etE4+Z+∞
201 200 raleqdv x=etE4+Zyx+∞z+y<z1+LEz<kyuz1+LEzRuuEyetE4+Z+∞z+y<z1+LEz<kyuz1+LEzRuuE
202 201 ralbidv x=etE4+ZkeCE+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuEkeCE+∞yetE4+Z+∞z+y<z1+LEz<kyuz1+LEzRuuE
203 202 rspcev etE4+Z+keCE+∞yetE4+Z+∞z+y<z1+LEz<kyuz1+LEzRuuEx+keCE+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE
204 33 199 203 syl2anc φt+v1+∞wv2vψwψv2wv+tvlogvx+keCE+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE
205 204 rexlimdvaa φt+v1+∞wv2vψwψv2wv+tvlogvx+keCE+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE
206 14 205 mpi φx+keCE+∞yx+∞z+y<z1+LEz<kyuz1+LEzRuuE