Metamath Proof Explorer


Theorem poimirlem13

Description: Lemma for poimir - for at most one simplex associated with a shared face is the opposite vertex first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
Assertion poimirlem13 φ*zS2ndz=0

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 1 ad2antrr φzSkS2ndz=02ndk=0N
5 3 ad2antrr φzSkS2ndz=02ndk=0F:0N10K1N
6 simplrl φzSkS2ndz=02ndk=0zS
7 simprl φzSkS2ndz=02ndk=02ndz=0
8 4 2 5 6 7 poimirlem10 φzSkS2ndz=02ndk=0FN1f1N×1=1st1stz
9 simplrr φzSkS2ndz=02ndk=0kS
10 simprr φzSkS2ndz=02ndk=02ndk=0
11 4 2 5 9 10 poimirlem10 φzSkS2ndz=02ndk=0FN1f1N×1=1st1stk
12 8 11 eqtr3d φzSkS2ndz=02ndk=01st1stz=1st1stk
13 elrabi zt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0z0..^K1N×f|f:1N1-1 onto1N×0N
14 13 2 eleq2s zSz0..^K1N×f|f:1N1-1 onto1N×0N
15 xp1st z0..^K1N×f|f:1N1-1 onto1N×0N1stz0..^K1N×f|f:1N1-1 onto1N
16 14 15 syl zS1stz0..^K1N×f|f:1N1-1 onto1N
17 xp2nd 1stz0..^K1N×f|f:1N1-1 onto1N2nd1stzf|f:1N1-1 onto1N
18 16 17 syl zS2nd1stzf|f:1N1-1 onto1N
19 fvex 2nd1stzV
20 f1oeq1 f=2nd1stzf:1N1-1 onto1N2nd1stz:1N1-1 onto1N
21 19 20 elab 2nd1stzf|f:1N1-1 onto1N2nd1stz:1N1-1 onto1N
22 18 21 sylib zS2nd1stz:1N1-1 onto1N
23 f1ofn 2nd1stz:1N1-1 onto1N2nd1stzFn1N
24 22 23 syl zS2nd1stzFn1N
25 24 adantr zSkS2nd1stzFn1N
26 25 ad2antlr φzSkS2ndz=02ndk=02nd1stzFn1N
27 elrabi kt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0k0..^K1N×f|f:1N1-1 onto1N×0N
28 27 2 eleq2s kSk0..^K1N×f|f:1N1-1 onto1N×0N
29 xp1st k0..^K1N×f|f:1N1-1 onto1N×0N1stk0..^K1N×f|f:1N1-1 onto1N
30 28 29 syl kS1stk0..^K1N×f|f:1N1-1 onto1N
31 xp2nd 1stk0..^K1N×f|f:1N1-1 onto1N2nd1stkf|f:1N1-1 onto1N
32 30 31 syl kS2nd1stkf|f:1N1-1 onto1N
33 fvex 2nd1stkV
34 f1oeq1 f=2nd1stkf:1N1-1 onto1N2nd1stk:1N1-1 onto1N
35 33 34 elab 2nd1stkf|f:1N1-1 onto1N2nd1stk:1N1-1 onto1N
36 32 35 sylib kS2nd1stk:1N1-1 onto1N
37 f1ofn 2nd1stk:1N1-1 onto1N2nd1stkFn1N
38 36 37 syl kS2nd1stkFn1N
39 38 adantl zSkS2nd1stkFn1N
40 39 ad2antlr φzSkS2ndz=02ndk=02nd1stkFn1N
41 eleq1 m=nm1Nn1N
42 41 anbi2d m=nφzSkS2ndz=02ndk=0m1NφzSkS2ndz=02ndk=0n1N
43 oveq2 m=n1m=1n
44 43 imaeq2d m=n2nd1stz1m=2nd1stz1n
45 43 imaeq2d m=n2nd1stk1m=2nd1stk1n
46 44 45 eqeq12d m=n2nd1stz1m=2nd1stk1m2nd1stz1n=2nd1stk1n
47 42 46 imbi12d m=nφzSkS2ndz=02ndk=0m1N2nd1stz1m=2nd1stk1mφzSkS2ndz=02ndk=0n1N2nd1stz1n=2nd1stk1n
48 1 ad3antrrr φzSkS2ndz=02ndk=0m1NN
49 3 ad3antrrr φzSkS2ndz=02ndk=0m1NF:0N10K1N
50 simpl zSkSzS
51 50 ad3antlr φzSkS2ndz=02ndk=0m1NzS
52 simplrl φzSkS2ndz=02ndk=0m1N2ndz=0
53 simpr zSkSkS
54 53 ad3antlr φzSkS2ndz=02ndk=0m1NkS
55 simplrr φzSkS2ndz=02ndk=0m1N2ndk=0
56 simpr φzSkS2ndz=02ndk=0m1Nm1N
57 48 2 49 51 52 54 55 56 poimirlem11 φzSkS2ndz=02ndk=0m1N2nd1stz1m2nd1stk1m
58 48 2 49 54 55 51 52 56 poimirlem11 φzSkS2ndz=02ndk=0m1N2nd1stk1m2nd1stz1m
59 57 58 eqssd φzSkS2ndz=02ndk=0m1N2nd1stz1m=2nd1stk1m
60 47 59 chvarvv φzSkS2ndz=02ndk=0n1N2nd1stz1n=2nd1stk1n
61 simpll φzSkS2ndz=02ndk=0φ
62 elfznn n1Nn
63 nnm1nn0 nn10
64 62 63 syl n1Nn10
65 64 adantr n1N¬n=1n10
66 62 nncnd n1Nn
67 ax-1cn 1
68 subeq0 n1n1=0n=1
69 66 67 68 sylancl n1Nn1=0n=1
70 69 necon3abid n1Nn10¬n=1
71 70 biimpar n1N¬n=1n10
72 elnnne0 n1n10n10
73 65 71 72 sylanbrc n1N¬n=1n1
74 73 adantl φn1N¬n=1n1
75 64 nn0red n1Nn1
76 75 adantl φn1Nn1
77 62 nnred n1Nn
78 77 adantl φn1Nn
79 1 nnred φN
80 79 adantr φn1NN
81 77 lem1d n1Nn1n
82 81 adantl φn1Nn1n
83 elfzle2 n1NnN
84 83 adantl φn1NnN
85 76 78 80 82 84 letrd φn1Nn1N
86 85 adantrr φn1N¬n=1n1N
87 1 nnzd φN
88 fznn Nn11Nn1n1N
89 87 88 syl φn11Nn1n1N
90 89 adantr φn1N¬n=1n11Nn1n1N
91 74 86 90 mpbir2and φn1N¬n=1n11N
92 61 91 sylan φzSkS2ndz=02ndk=0n1N¬n=1n11N
93 ovex n1V
94 eleq1 m=n1m1Nn11N
95 94 anbi2d m=n1φzSkS2ndz=02ndk=0m1NφzSkS2ndz=02ndk=0n11N
96 oveq2 m=n11m=1n1
97 96 imaeq2d m=n12nd1stz1m=2nd1stz1n1
98 96 imaeq2d m=n12nd1stk1m=2nd1stk1n1
99 97 98 eqeq12d m=n12nd1stz1m=2nd1stk1m2nd1stz1n1=2nd1stk1n1
100 95 99 imbi12d m=n1φzSkS2ndz=02ndk=0m1N2nd1stz1m=2nd1stk1mφzSkS2ndz=02ndk=0n11N2nd1stz1n1=2nd1stk1n1
101 93 100 59 vtocl φzSkS2ndz=02ndk=0n11N2nd1stz1n1=2nd1stk1n1
102 92 101 syldan φzSkS2ndz=02ndk=0n1N¬n=12nd1stz1n1=2nd1stk1n1
103 102 expr φzSkS2ndz=02ndk=0n1N¬n=12nd1stz1n1=2nd1stk1n1
104 ima0 2nd1stz=
105 ima0 2nd1stk=
106 104 105 eqtr4i 2nd1stz=2nd1stk
107 oveq1 n=1n1=11
108 1m1e0 11=0
109 107 108 eqtrdi n=1n1=0
110 109 oveq2d n=11n1=10
111 fz10 10=
112 110 111 eqtrdi n=11n1=
113 112 imaeq2d n=12nd1stz1n1=2nd1stz
114 112 imaeq2d n=12nd1stk1n1=2nd1stk
115 106 113 114 3eqtr4a n=12nd1stz1n1=2nd1stk1n1
116 103 115 pm2.61d2 φzSkS2ndz=02ndk=0n1N2nd1stz1n1=2nd1stk1n1
117 60 116 difeq12d φzSkS2ndz=02ndk=0n1N2nd1stz1n2nd1stz1n1=2nd1stk1n2nd1stk1n1
118 fnsnfv 2nd1stzFn1Nn1N2nd1stzn=2nd1stzn
119 24 118 sylan zSn1N2nd1stzn=2nd1stzn
120 62 adantl zSn1Nn
121 uncom 1n1n=n1n1
122 121 difeq1i 1n1n1n1=n1n11n1
123 difun2 n1n11n1=n1n1
124 122 123 eqtri 1n1n1n1=n1n1
125 nncn nn
126 npcan1 nn-1+1=n
127 125 126 syl nn-1+1=n
128 elnnuz nn1
129 128 biimpi nn1
130 127 129 eqeltrd nn-1+11
131 63 nn0zd nn1
132 uzid n1n1n1
133 131 132 syl nn1n1
134 peano2uz n1n1n-1+1n1
135 133 134 syl nn-1+1n1
136 127 135 eqeltrrd nnn1
137 fzsplit2 n-1+11nn11n=1n1n-1+1n
138 130 136 137 syl2anc n1n=1n1n-1+1n
139 127 oveq1d nn-1+1n=nn
140 nnz nn
141 fzsn nnn=n
142 140 141 syl nnn=n
143 139 142 eqtrd nn-1+1n=n
144 143 uneq2d n1n1n-1+1n=1n1n
145 138 144 eqtrd n1n=1n1n
146 145 difeq1d n1n1n1=1n1n1n1
147 nnre nn
148 ltm1 nn1<n
149 peano2rem nn1
150 ltnle n1nn1<n¬nn1
151 149 150 mpancom nn1<n¬nn1
152 148 151 mpbid n¬nn1
153 elfzle2 n1n1nn1
154 152 153 nsyl n¬n1n1
155 147 154 syl n¬n1n1
156 incom 1n1n=n1n1
157 156 eqeq1i 1n1n=n1n1=
158 disjsn 1n1n=¬n1n1
159 disj3 n1n1=n=n1n1
160 157 158 159 3bitr3i ¬n1n1n=n1n1
161 155 160 sylib nn=n1n1
162 124 146 161 3eqtr4a n1n1n1=n
163 120 162 syl zSn1N1n1n1=n
164 163 imaeq2d zSn1N2nd1stz1n1n1=2nd1stzn
165 dff1o3 2nd1stz:1N1-1 onto1N2nd1stz:1Nonto1NFun2nd1stz-1
166 165 simprbi 2nd1stz:1N1-1 onto1NFun2nd1stz-1
167 22 166 syl zSFun2nd1stz-1
168 imadif Fun2nd1stz-12nd1stz1n1n1=2nd1stz1n2nd1stz1n1
169 167 168 syl zS2nd1stz1n1n1=2nd1stz1n2nd1stz1n1
170 169 adantr zSn1N2nd1stz1n1n1=2nd1stz1n2nd1stz1n1
171 119 164 170 3eqtr2d zSn1N2nd1stzn=2nd1stz1n2nd1stz1n1
172 6 171 sylan φzSkS2ndz=02ndk=0n1N2nd1stzn=2nd1stz1n2nd1stz1n1
173 eleq1 z=kzSkS
174 173 anbi1d z=kzSn1NkSn1N
175 2fveq3 z=k2nd1stz=2nd1stk
176 175 fveq1d z=k2nd1stzn=2nd1stkn
177 176 sneqd z=k2nd1stzn=2nd1stkn
178 175 imaeq1d z=k2nd1stz1n=2nd1stk1n
179 175 imaeq1d z=k2nd1stz1n1=2nd1stk1n1
180 178 179 difeq12d z=k2nd1stz1n2nd1stz1n1=2nd1stk1n2nd1stk1n1
181 177 180 eqeq12d z=k2nd1stzn=2nd1stz1n2nd1stz1n12nd1stkn=2nd1stk1n2nd1stk1n1
182 174 181 imbi12d z=kzSn1N2nd1stzn=2nd1stz1n2nd1stz1n1kSn1N2nd1stkn=2nd1stk1n2nd1stk1n1
183 182 171 chvarvv kSn1N2nd1stkn=2nd1stk1n2nd1stk1n1
184 9 183 sylan φzSkS2ndz=02ndk=0n1N2nd1stkn=2nd1stk1n2nd1stk1n1
185 117 172 184 3eqtr4d φzSkS2ndz=02ndk=0n1N2nd1stzn=2nd1stkn
186 fvex 2nd1stznV
187 186 sneqr 2nd1stzn=2nd1stkn2nd1stzn=2nd1stkn
188 185 187 syl φzSkS2ndz=02ndk=0n1N2nd1stzn=2nd1stkn
189 26 40 188 eqfnfvd φzSkS2ndz=02ndk=02nd1stz=2nd1stk
190 xpopth 1stz0..^K1N×f|f:1N1-1 onto1N1stk0..^K1N×f|f:1N1-1 onto1N1st1stz=1st1stk2nd1stz=2nd1stk1stz=1stk
191 16 30 190 syl2an zSkS1st1stz=1st1stk2nd1stz=2nd1stk1stz=1stk
192 191 ad2antlr φzSkS2ndz=02ndk=01st1stz=1st1stk2nd1stz=2nd1stk1stz=1stk
193 12 189 192 mpbi2and φzSkS2ndz=02ndk=01stz=1stk
194 eqtr3 2ndz=02ndk=02ndz=2ndk
195 194 adantl φzSkS2ndz=02ndk=02ndz=2ndk
196 xpopth z0..^K1N×f|f:1N1-1 onto1N×0Nk0..^K1N×f|f:1N1-1 onto1N×0N1stz=1stk2ndz=2ndkz=k
197 14 28 196 syl2an zSkS1stz=1stk2ndz=2ndkz=k
198 197 ad2antlr φzSkS2ndz=02ndk=01stz=1stk2ndz=2ndkz=k
199 193 195 198 mpbi2and φzSkS2ndz=02ndk=0z=k
200 199 ex φzSkS2ndz=02ndk=0z=k
201 200 ralrimivva φzSkS2ndz=02ndk=0z=k
202 fveqeq2 z=k2ndz=02ndk=0
203 202 rmo4 *zS2ndz=0zSkS2ndz=02ndk=0z=k
204 201 203 sylibr φ*zS2ndz=0