| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pserf.g |  | 
						
							| 2 |  | pserf.f |  | 
						
							| 3 |  | pserf.a |  | 
						
							| 4 |  | pserf.r |  | 
						
							| 5 |  | psercn.s |  | 
						
							| 6 |  | psercn.m |  | 
						
							| 7 |  | pserdv.b |  | 
						
							| 8 |  | dvfcn |  | 
						
							| 9 |  | ssidd |  | 
						
							| 10 | 1 2 3 4 5 6 | psercn |  | 
						
							| 11 |  | cncff |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | cnvimass |  | 
						
							| 14 |  | absf |  | 
						
							| 15 | 14 | fdmi |  | 
						
							| 16 | 13 15 | sseqtri |  | 
						
							| 17 | 5 16 | eqsstri |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 | 9 12 18 | dvbss |  | 
						
							| 20 |  | ssidd |  | 
						
							| 21 | 12 | adantr |  | 
						
							| 22 | 17 | a1i |  | 
						
							| 23 |  | cnxmet |  | 
						
							| 24 |  | 0cnd |  | 
						
							| 25 | 18 | sselda |  | 
						
							| 26 | 25 | abscld |  | 
						
							| 27 | 1 2 3 4 5 6 | psercnlem1 |  | 
						
							| 28 | 27 | simp1d |  | 
						
							| 29 | 28 | rpred |  | 
						
							| 30 | 26 29 | readdcld |  | 
						
							| 31 |  | 0red |  | 
						
							| 32 | 25 | absge0d |  | 
						
							| 33 | 26 28 | ltaddrpd |  | 
						
							| 34 | 31 26 30 32 33 | lelttrd |  | 
						
							| 35 | 30 34 | elrpd |  | 
						
							| 36 | 35 | rphalfcld |  | 
						
							| 37 | 36 | rpxrd |  | 
						
							| 38 |  | blssm |  | 
						
							| 39 | 23 24 37 38 | mp3an2i |  | 
						
							| 40 | 7 39 | eqsstrid |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 41 | cnfldtopon |  | 
						
							| 43 | 42 | toponrestid |  | 
						
							| 44 | 41 43 | dvres |  | 
						
							| 45 | 20 21 22 40 44 | syl22anc |  | 
						
							| 46 |  | resss |  | 
						
							| 47 | 45 46 | eqsstrdi |  | 
						
							| 48 |  | dmss |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 | 1 2 3 4 5 6 | pserdvlem1 |  | 
						
							| 51 | 1 2 3 4 5 50 | psercnlem2 |  | 
						
							| 52 | 51 | simp1d |  | 
						
							| 53 | 52 7 | eleqtrrdi |  | 
						
							| 54 | 1 2 3 4 5 6 7 | pserdvlem2 |  | 
						
							| 55 | 54 | dmeqd |  | 
						
							| 56 |  | dmmptg |  | 
						
							| 57 |  | sumex |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 | 56 58 | mprg |  | 
						
							| 60 | 55 59 | eqtrdi |  | 
						
							| 61 | 53 60 | eleqtrrd |  | 
						
							| 62 | 49 61 | sseldd |  | 
						
							| 63 | 19 62 | eqelssd |  | 
						
							| 64 | 63 | feq2d |  | 
						
							| 65 | 8 64 | mpbii |  | 
						
							| 66 | 65 | feqmptd |  | 
						
							| 67 |  | ffun |  | 
						
							| 68 | 8 67 | mp1i |  | 
						
							| 69 |  | funssfv |  | 
						
							| 70 | 68 47 61 69 | syl3anc |  | 
						
							| 71 | 54 | fveq1d |  | 
						
							| 72 |  | oveq1 |  | 
						
							| 73 | 72 | oveq2d |  | 
						
							| 74 | 73 | sumeq2sdv |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 |  | sumex |  | 
						
							| 77 | 74 75 76 | fvmpt |  | 
						
							| 78 | 53 77 | syl |  | 
						
							| 79 | 70 71 78 | 3eqtrd |  | 
						
							| 80 | 79 | mpteq2dva |  | 
						
							| 81 | 66 80 | eqtrd |  | 
						
							| 82 |  | oveq1 |  | 
						
							| 83 | 82 | oveq2d |  | 
						
							| 84 | 83 | sumeq2sdv |  | 
						
							| 85 | 84 | cbvmptv |  | 
						
							| 86 | 81 85 | eqtrdi |  |