Metamath Proof Explorer


Theorem pserdv

Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
psercn.s S=abs-10R
psercn.m M=ifRa+R2a+1
pserdv.b B=0ballabsa+M2
Assertion pserdv φDF=ySk0k+1Ak+1yk

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 psercn.s S=abs-10R
6 psercn.m M=ifRa+R2a+1
7 pserdv.b B=0ballabsa+M2
8 dvfcn F:domF
9 ssidd φ
10 1 2 3 4 5 6 psercn φF:Scn
11 cncff F:ScnF:S
12 10 11 syl φF:S
13 cnvimass abs-10Rdomabs
14 absf abs:
15 14 fdmi domabs=
16 13 15 sseqtri abs-10R
17 5 16 eqsstri S
18 17 a1i φS
19 9 12 18 dvbss φdomFS
20 ssidd φaS
21 12 adantr φaSF:S
22 17 a1i φaSS
23 cnxmet abs∞Met
24 0cnd φaS0
25 18 sselda φaSa
26 25 abscld φaSa
27 1 2 3 4 5 6 psercnlem1 φaSM+a<MM<R
28 27 simp1d φaSM+
29 28 rpred φaSM
30 26 29 readdcld φaSa+M
31 0red φaS0
32 25 absge0d φaS0a
33 26 28 ltaddrpd φaSa<a+M
34 31 26 30 32 33 lelttrd φaS0<a+M
35 30 34 elrpd φaSa+M+
36 35 rphalfcld φaSa+M2+
37 36 rpxrd φaSa+M2*
38 blssm abs∞Met0a+M2*0ballabsa+M2
39 23 24 37 38 mp3an2i φaS0ballabsa+M2
40 7 39 eqsstrid φaSB
41 eqid TopOpenfld=TopOpenfld
42 41 cnfldtopon TopOpenfldTopOn
43 42 toponrestid TopOpenfld=TopOpenfld𝑡
44 41 43 dvres F:SSBDFB=FintTopOpenfldB
45 20 21 22 40 44 syl22anc φaSDFB=FintTopOpenfldB
46 resss FintTopOpenfldBDF
47 45 46 eqsstrdi φaSDFBDF
48 dmss DFBDFdomFBdomF
49 47 48 syl φaSdomFBdomF
50 1 2 3 4 5 6 pserdvlem1 φaSa+M2+a<a+M2a+M2<R
51 1 2 3 4 5 50 psercnlem2 φaSa0ballabsa+M20ballabsa+M2abs-10a+M2abs-10a+M2S
52 51 simp1d φaSa0ballabsa+M2
53 52 7 eleqtrrdi φaSaB
54 1 2 3 4 5 6 7 pserdvlem2 φaSDFB=yBk0k+1Ak+1yk
55 54 dmeqd φaSdomFB=domyBk0k+1Ak+1yk
56 dmmptg yBk0k+1Ak+1ykVdomyBk0k+1Ak+1yk=B
57 sumex k0k+1Ak+1ykV
58 57 a1i yBk0k+1Ak+1ykV
59 56 58 mprg domyBk0k+1Ak+1yk=B
60 55 59 eqtrdi φaSdomFB=B
61 53 60 eleqtrrd φaSadomFB
62 49 61 sseldd φaSadomF
63 19 62 eqelssd φdomF=S
64 63 feq2d φF:domFF:S
65 8 64 mpbii φF:S
66 65 feqmptd φDF=aSFa
67 ffun F:domFFunF
68 8 67 mp1i φaSFunF
69 funssfv FunFDFBDFadomFBFa=FBa
70 68 47 61 69 syl3anc φaSFa=FBa
71 54 fveq1d φaSFBa=yBk0k+1Ak+1yka
72 oveq1 y=ayk=ak
73 72 oveq2d y=ak+1Ak+1yk=k+1Ak+1ak
74 73 sumeq2sdv y=ak0k+1Ak+1yk=k0k+1Ak+1ak
75 eqid yBk0k+1Ak+1yk=yBk0k+1Ak+1yk
76 sumex k0k+1Ak+1akV
77 74 75 76 fvmpt aByBk0k+1Ak+1yka=k0k+1Ak+1ak
78 53 77 syl φaSyBk0k+1Ak+1yka=k0k+1Ak+1ak
79 70 71 78 3eqtrd φaSFa=k0k+1Ak+1ak
80 79 mpteq2dva φaSFa=aSk0k+1Ak+1ak
81 66 80 eqtrd φDF=aSk0k+1Ak+1ak
82 oveq1 a=yak=yk
83 82 oveq2d a=yk+1Ak+1ak=k+1Ak+1yk
84 83 sumeq2sdv a=yk0k+1Ak+1ak=k0k+1Ak+1yk
85 84 cbvmptv aSk0k+1Ak+1ak=ySk0k+1Ak+1yk
86 81 85 eqtrdi φDF=ySk0k+1Ak+1yk