Metamath Proof Explorer


Theorem ptrest

Description: Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019)

Ref Expression
Hypotheses ptrest.0 φAV
ptrest.1 φF:ATop
ptrest.2 φkASW
Assertion ptrest φ𝑡F𝑡kAS=𝑡kAFk𝑡S

Proof

Step Hyp Ref Expression
1 ptrest.0 φAV
2 ptrest.1 φF:ATop
3 ptrest.2 φkASW
4 firest fi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=fi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS
5 snex 𝑡FV
6 fvex FuV
7 6 rgenw uAFuV
8 eqid uA,vFuw𝑡Fwu-1v=uA,vFuw𝑡Fwu-1v
9 8 mpoexxg AVuAFuVuA,vFuw𝑡Fwu-1vV
10 1 7 9 sylancl φuA,vFuw𝑡Fwu-1vV
11 rnexg uA,vFuw𝑡Fwu-1vVranuA,vFuw𝑡Fwu-1vV
12 10 11 syl φranuA,vFuw𝑡Fwu-1vV
13 unexg 𝑡FVranuA,vFuw𝑡Fwu-1vV𝑡FranuA,vFuw𝑡Fwu-1vV
14 5 12 13 sylancr φ𝑡FranuA,vFuw𝑡Fwu-1vV
15 3 ralrimiva φkASW
16 ixpexg kASWkASV
17 15 16 syl φkASV
18 restval 𝑡FranuA,vFuw𝑡Fwu-1vVkASV𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=ranx𝑡FranuA,vFuw𝑡Fwu-1vxkAS
19 14 17 18 syl2anc φ𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=ranx𝑡FranuA,vFuw𝑡Fwu-1vxkAS
20 mptun x𝑡FranuA,vFuw𝑡Fwu-1vxkAS=x𝑡FxkASxranuA,vFuw𝑡Fwu-1vxkAS
21 20 rneqi ranx𝑡FranuA,vFuw𝑡Fwu-1vxkAS=ranx𝑡FxkASxranuA,vFuw𝑡Fwu-1vxkAS
22 rnun ranx𝑡FxkASxranuA,vFuw𝑡Fwu-1vxkAS=ranx𝑡FxkASranxranuA,vFuw𝑡Fwu-1vxkAS
23 21 22 eqtri ranx𝑡FranuA,vFuw𝑡Fwu-1vxkAS=ranx𝑡FxkASranxranuA,vFuw𝑡Fwu-1vxkAS
24 elsni x𝑡Fx=𝑡F
25 24 ineq1d x𝑡FxkAS=𝑡FkAS
26 25 mpteq2ia x𝑡FxkAS=x𝑡F𝑡FkAS
27 fvex 𝑡FV
28 27 uniex 𝑡FV
29 28 inex1 𝑡FkASV
30 fmptsn 𝑡FV𝑡FkASV𝑡F𝑡FkAS=x𝑡F𝑡FkAS
31 28 29 30 mp2an 𝑡F𝑡FkAS=x𝑡F𝑡FkAS
32 26 31 eqtr4i x𝑡FxkAS=𝑡F𝑡FkAS
33 32 rneqi ranx𝑡FxkAS=ran𝑡F𝑡FkAS
34 28 rnsnop ran𝑡F𝑡FkAS=𝑡FkAS
35 33 34 eqtri ranx𝑡FxkAS=𝑡FkAS
36 2 ffvelcdmda φkAFkTop
37 inss1 FkSFk
38 eqid Fk=Fk
39 38 restuni FkTopFkSFkFkS=Fk𝑡FkS
40 36 37 39 sylancl φkAFkS=Fk𝑡FkS
41 fvex FkV
42 38 restin FkVSWFk𝑡S=Fk𝑡SFk
43 41 3 42 sylancr φkAFk𝑡S=Fk𝑡SFk
44 incom SFk=FkS
45 44 oveq2i Fk𝑡SFk=Fk𝑡FkS
46 43 45 eqtrdi φkAFk𝑡S=Fk𝑡FkS
47 46 unieqd φkAFk𝑡S=Fk𝑡FkS
48 40 47 eqtr4d φkAFkS=Fk𝑡S
49 48 ixpeq2dva φkAFkS=kAFk𝑡S
50 ixpin kAFkS=kAFkkAS
51 nfcv _yFk𝑡S
52 nfcv _kFy
53 nfcv _k𝑡
54 nfcsb1v _ky/kS
55 52 53 54 nfov _kFy𝑡y/kS
56 55 nfuni _kFy𝑡y/kS
57 fveq2 k=yFk=Fy
58 csbeq1a k=yS=y/kS
59 57 58 oveq12d k=yFk𝑡S=Fy𝑡y/kS
60 59 unieqd k=yFk𝑡S=Fy𝑡y/kS
61 51 56 60 cbvixp kAFk𝑡S=yAFy𝑡y/kS
62 ixpeq2 yAkAFk𝑡Sy=Fy𝑡y/kSyAkAFk𝑡Sy=yAFy𝑡y/kS
63 ovex Fy𝑡y/kSV
64 nfcv _ky
65 eqid kAFk𝑡S=kAFk𝑡S
66 64 55 59 65 fvmptf yAFy𝑡y/kSVkAFk𝑡Sy=Fy𝑡y/kS
67 63 66 mpan2 yAkAFk𝑡Sy=Fy𝑡y/kS
68 67 unieqd yAkAFk𝑡Sy=Fy𝑡y/kS
69 62 68 mprg yAkAFk𝑡Sy=yAFy𝑡y/kS
70 61 69 eqtr4i kAFk𝑡S=yAkAFk𝑡Sy
71 49 50 70 3eqtr3g φkAFkkAS=yAkAFk𝑡Sy
72 eqid 𝑡F=𝑡F
73 72 ptuni AVF:ATopkAFk=𝑡F
74 1 2 73 syl2anc φkAFk=𝑡F
75 74 ineq1d φkAFkkAS=𝑡FkAS
76 resttop FkTopSWFk𝑡STop
77 36 3 76 syl2anc φkAFk𝑡STop
78 77 fmpttd φkAFk𝑡S:ATop
79 eqid 𝑡kAFk𝑡S=𝑡kAFk𝑡S
80 79 ptuni AVkAFk𝑡S:ATopyAkAFk𝑡Sy=𝑡kAFk𝑡S
81 1 78 80 syl2anc φyAkAFk𝑡Sy=𝑡kAFk𝑡S
82 71 75 81 3eqtr3d φ𝑡FkAS=𝑡kAFk𝑡S
83 82 sneqd φ𝑡FkAS=𝑡kAFk𝑡S
84 35 83 eqtrid φranx𝑡FxkAS=𝑡kAFk𝑡S
85 vex wV
86 85 elixp wkASwFnAkAwkS
87 86 simprbi wkASkAwkS
88 nfcsb1v _ku/kS
89 88 nfel2 kwuu/kS
90 fveq2 k=uwk=wu
91 csbeq1a k=uS=u/kS
92 90 91 eleq12d k=uwkSwuu/kS
93 89 92 rspc uAkAwkSwuu/kS
94 87 93 syl5 uAwkASwuu/kS
95 94 pm4.71d uAwkASwkASwuu/kS
96 95 anbi2d uAw𝑡FwuvwkASw𝑡FwuvwkASwuu/kS
97 an4 w𝑡FwuvwkASwuu/kSw𝑡FwkASwuvwuu/kS
98 elin wuvu/kSwuvwuu/kS
99 98 anbi2i w𝑡FwkASwuvu/kSw𝑡FwkASwuvwuu/kS
100 97 99 bitr4i w𝑡FwuvwkASwuu/kSw𝑡FwkASwuvu/kS
101 96 100 bitrdi uAw𝑡FwuvwkASw𝑡FwkASwuvu/kS
102 elin w𝑡FkASw𝑡FwkAS
103 82 eleq2d φw𝑡FkASw𝑡kAFk𝑡S
104 102 103 bitr3id φw𝑡FwkASw𝑡kAFk𝑡S
105 104 anbi1d φw𝑡FwkASwuvu/kSw𝑡kAFk𝑡Swuvu/kS
106 101 105 sylan9bbr φuAw𝑡FwuvwkASw𝑡kAFk𝑡Swuvu/kS
107 106 abbidv φuAw|w𝑡FwuvwkAS=w|w𝑡kAFk𝑡Swuvu/kS
108 eqid w𝑡Fwu=w𝑡Fwu
109 108 mptpreima w𝑡Fwu-1v=w𝑡F|wuv
110 df-rab w𝑡F|wuv=w|w𝑡Fwuv
111 109 110 eqtr2i w|w𝑡Fwuv=w𝑡Fwu-1v
112 abid2 w|wkAS=kAS
113 111 112 ineq12i w|w𝑡Fwuvw|wkAS=w𝑡Fwu-1vkAS
114 inab w|w𝑡Fwuvw|wkAS=w|w𝑡FwuvwkAS
115 113 114 eqtr3i w𝑡Fwu-1vkAS=w|w𝑡FwuvwkAS
116 eqid w𝑡kAFk𝑡Swu=w𝑡kAFk𝑡Swu
117 116 mptpreima w𝑡kAFk𝑡Swu-1vu/kS=w𝑡kAFk𝑡S|wuvu/kS
118 df-rab w𝑡kAFk𝑡S|wuvu/kS=w|w𝑡kAFk𝑡Swuvu/kS
119 117 118 eqtri w𝑡kAFk𝑡Swu-1vu/kS=w|w𝑡kAFk𝑡Swuvu/kS
120 107 115 119 3eqtr4g φuAw𝑡Fwu-1vkAS=w𝑡kAFk𝑡Swu-1vu/kS
121 120 eqeq2d φuAx=w𝑡Fwu-1vkASx=w𝑡kAFk𝑡Swu-1vu/kS
122 121 rexbidv φuAvFux=w𝑡Fwu-1vkASvFux=w𝑡kAFk𝑡Swu-1vu/kS
123 ineq1 v=yvu/kS=yu/kS
124 123 imaeq2d v=yw𝑡kAFk𝑡Swu-1vu/kS=w𝑡kAFk𝑡Swu-1yu/kS
125 124 eqeq2d v=yx=w𝑡kAFk𝑡Swu-1vu/kSx=w𝑡kAFk𝑡Swu-1yu/kS
126 125 cbvrexvw vFux=w𝑡kAFk𝑡Swu-1vu/kSyFux=w𝑡kAFk𝑡Swu-1yu/kS
127 122 126 bitrdi φuAvFux=w𝑡Fwu-1vkASyFux=w𝑡kAFk𝑡Swu-1yu/kS
128 vex yV
129 128 inex1 yu/kSV
130 129 a1i φuAyFuyu/kSV
131 ovex Fu𝑡u/kSV
132 nfcv _ku
133 nfcv _kFu
134 133 53 88 nfov _kFu𝑡u/kS
135 fveq2 k=uFk=Fu
136 135 91 oveq12d k=uFk𝑡S=Fu𝑡u/kS
137 132 134 136 65 fvmptf uAFu𝑡u/kSVkAFk𝑡Su=Fu𝑡u/kS
138 131 137 mpan2 uAkAFk𝑡Su=Fu𝑡u/kS
139 138 adantl φuAkAFk𝑡Su=Fu𝑡u/kS
140 139 eleq2d φuAvkAFk𝑡SuvFu𝑡u/kS
141 nfv kφuA
142 nfcsb1v _ku/kW
143 88 142 nfel ku/kSu/kW
144 141 143 nfim kφuAu/kSu/kW
145 eleq1w k=ukAuA
146 145 anbi2d k=uφkAφuA
147 csbeq1a k=uW=u/kW
148 91 147 eleq12d k=uSWu/kSu/kW
149 146 148 imbi12d k=uφkASWφuAu/kSu/kW
150 144 149 3 chvarfv φuAu/kSu/kW
151 elrest FuVu/kSu/kWvFu𝑡u/kSyFuv=yu/kS
152 6 150 151 sylancr φuAvFu𝑡u/kSyFuv=yu/kS
153 140 152 bitrd φuAvkAFk𝑡SuyFuv=yu/kS
154 imaeq2 v=yu/kSw𝑡kAFk𝑡Swu-1v=w𝑡kAFk𝑡Swu-1yu/kS
155 154 eqeq2d v=yu/kSx=w𝑡kAFk𝑡Swu-1vx=w𝑡kAFk𝑡Swu-1yu/kS
156 155 adantl φuAv=yu/kSx=w𝑡kAFk𝑡Swu-1vx=w𝑡kAFk𝑡Swu-1yu/kS
157 130 153 156 rexxfr2d φuAvkAFk𝑡Sux=w𝑡kAFk𝑡Swu-1vyFux=w𝑡kAFk𝑡Swu-1yu/kS
158 127 157 bitr4d φuAvFux=w𝑡Fwu-1vkASvkAFk𝑡Sux=w𝑡kAFk𝑡Swu-1v
159 158 rexbidva φuAvFux=w𝑡Fwu-1vkASuAvkAFk𝑡Sux=w𝑡kAFk𝑡Swu-1v
160 159 abbidv φx|uAvFux=w𝑡Fwu-1vkAS=x|uAvkAFk𝑡Sux=w𝑡kAFk𝑡Swu-1v
161 eqid xranuA,vFuw𝑡Fwu-1vxkAS=xranuA,vFuw𝑡Fwu-1vxkAS
162 161 rnmpt ranxranuA,vFuw𝑡Fwu-1vxkAS=y|xranuA,vFuw𝑡Fwu-1vy=xkAS
163 nfre1 xxranuA,vFuw𝑡Fwu-1vy=xkAS
164 nfv yuAvFux=w𝑡Fwu-1vkAS
165 28 mptex w𝑡FwuV
166 165 cnvex w𝑡Fwu-1V
167 166 imaex w𝑡Fwu-1vV
168 167 rgen2w uAvFuw𝑡Fwu-1vV
169 ineq1 x=w𝑡Fwu-1vxkAS=w𝑡Fwu-1vkAS
170 169 eqeq2d x=w𝑡Fwu-1vy=xkASy=w𝑡Fwu-1vkAS
171 8 170 rexrnmpo uAvFuw𝑡Fwu-1vVxranuA,vFuw𝑡Fwu-1vy=xkASuAvFuy=w𝑡Fwu-1vkAS
172 168 171 ax-mp xranuA,vFuw𝑡Fwu-1vy=xkASuAvFuy=w𝑡Fwu-1vkAS
173 eqeq1 y=xy=w𝑡Fwu-1vkASx=w𝑡Fwu-1vkAS
174 173 2rexbidv y=xuAvFuy=w𝑡Fwu-1vkASuAvFux=w𝑡Fwu-1vkAS
175 172 174 bitrid y=xxranuA,vFuw𝑡Fwu-1vy=xkASuAvFux=w𝑡Fwu-1vkAS
176 163 164 175 cbvabw y|xranuA,vFuw𝑡Fwu-1vy=xkAS=x|uAvFux=w𝑡Fwu-1vkAS
177 162 176 eqtri ranxranuA,vFuw𝑡Fwu-1vxkAS=x|uAvFux=w𝑡Fwu-1vkAS
178 eqid uA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v=uA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
179 178 rnmpo ranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v=x|uAvkAFk𝑡Sux=w𝑡kAFk𝑡Swu-1v
180 160 177 179 3eqtr4g φranxranuA,vFuw𝑡Fwu-1vxkAS=ranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
181 84 180 uneq12d φranx𝑡FxkASranxranuA,vFuw𝑡Fwu-1vxkAS=𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
182 23 181 eqtrid φranx𝑡FranuA,vFuw𝑡Fwu-1vxkAS=𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
183 19 182 eqtrd φ𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
184 183 fveq2d φfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=fi𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
185 4 184 eqtr3id φfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=fi𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
186 185 fveq2d φtopGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=topGenfi𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
187 eqid 𝑡F=𝑡F
188 72 187 8 ptval2 AVF:ATop𝑡F=topGenfi𝑡FranuA,vFuw𝑡Fwu-1v
189 1 2 188 syl2anc φ𝑡F=topGenfi𝑡FranuA,vFuw𝑡Fwu-1v
190 189 oveq1d φ𝑡F𝑡kAS=topGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS
191 fvex fi𝑡FranuA,vFuw𝑡Fwu-1vV
192 tgrest fi𝑡FranuA,vFuw𝑡Fwu-1vVkASVtopGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=topGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS
193 191 17 192 sylancr φtopGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS=topGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS
194 190 193 eqtr4d φ𝑡F𝑡kAS=topGenfi𝑡FranuA,vFuw𝑡Fwu-1v𝑡kAS
195 eqid 𝑡kAFk𝑡S=𝑡kAFk𝑡S
196 79 195 178 ptval2 AVkAFk𝑡S:ATop𝑡kAFk𝑡S=topGenfi𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
197 1 78 196 syl2anc φ𝑡kAFk𝑡S=topGenfi𝑡kAFk𝑡SranuA,vkAFk𝑡Suw𝑡kAFk𝑡Swu-1v
198 186 194 197 3eqtr4d φ𝑡F𝑡kAS=𝑡kAFk𝑡S