Metamath Proof Explorer


Theorem sdclem2

Description: Lemma for sdc . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sdc.1 Z=M
sdc.2 g=fMnψχ
sdc.3 n=Mψτ
sdc.4 n=kψθ
sdc.5 g=hn=k+1ψσ
sdc.6 φAV
sdc.7 φM
sdc.8 φgg:MAτ
sdc.9 φkZg:MkAθhh:Mk+1Ag=hMkσ
sdc.10 J=g|nZg:MnAψ
sdc.11 F=wZ,xJh|kZh:Mk+1Ax=hMkσ
sdc.12 kφ
sdc.13 φG:ZJ
sdc.14 φGM:MMA
sdc.15 φwZGw+1wFGw
Assertion sdclem2 φff:ZAnZχ

Proof

Step Hyp Ref Expression
1 sdc.1 Z=M
2 sdc.2 g=fMnψχ
3 sdc.3 n=Mψτ
4 sdc.4 n=kψθ
5 sdc.5 g=hn=k+1ψσ
6 sdc.6 φAV
7 sdc.7 φM
8 sdc.8 φgg:MAτ
9 sdc.9 φkZg:MkAθhh:Mk+1Ag=hMkσ
10 sdc.10 J=g|nZg:MnAψ
11 sdc.11 F=wZ,xJh|kZh:Mk+1Ax=hMkσ
12 sdc.12 kφ
13 sdc.13 φG:ZJ
14 sdc.14 φGM:MMA
15 sdc.15 φwZGw+1wFGw
16 13 ffvelcdmda φkZGkJ
17 10 eleq2i GkJGkg|nZg:MnAψ
18 nfcv _gZ
19 nfv gGk:MnA
20 nfsbc1v g[˙Gk/g]˙ψ
21 19 20 nfan gGk:MnA[˙Gk/g]˙ψ
22 18 21 nfrexw gnZGk:MnA[˙Gk/g]˙ψ
23 fvex GkV
24 feq1 g=Gkg:MnAGk:MnA
25 sbceq1a g=Gkψ[˙Gk/g]˙ψ
26 24 25 anbi12d g=Gkg:MnAψGk:MnA[˙Gk/g]˙ψ
27 26 rexbidv g=GknZg:MnAψnZGk:MnA[˙Gk/g]˙ψ
28 22 23 27 elabf Gkg|nZg:MnAψnZGk:MnA[˙Gk/g]˙ψ
29 17 28 bitri GkJnZGk:MnA[˙Gk/g]˙ψ
30 16 29 sylib φkZnZGk:MnA[˙Gk/g]˙ψ
31 fdm Gk:MnAdomGk=Mn
32 31 adantr Gk:MnA[˙Gk/g]˙ψdomGk=Mn
33 fveq2 x=MGx=GM
34 oveq2 x=MMx=MM
35 34 mpteq1d x=MmMxGmm=mMMGmm
36 33 35 eqeq12d x=MGx=mMxGmmGM=mMMGmm
37 36 imbi2d x=MφGx=mMxGmmφGM=mMMGmm
38 fveq2 x=wGx=Gw
39 oveq2 x=wMx=Mw
40 39 mpteq1d x=wmMxGmm=mMwGmm
41 38 40 eqeq12d x=wGx=mMxGmmGw=mMwGmm
42 41 imbi2d x=wφGx=mMxGmmφGw=mMwGmm
43 fveq2 x=w+1Gx=Gw+1
44 oveq2 x=w+1Mx=Mw+1
45 44 mpteq1d x=w+1mMxGmm=mMw+1Gmm
46 43 45 eqeq12d x=w+1Gx=mMxGmmGw+1=mMw+1Gmm
47 46 imbi2d x=w+1φGx=mMxGmmφGw+1=mMw+1Gmm
48 fveq2 x=kGx=Gk
49 oveq2 x=kMx=Mk
50 49 mpteq1d x=kmMxGmm=mMkGmm
51 48 50 eqeq12d x=kGx=mMxGmmGk=mMkGmm
52 51 imbi2d x=kφGx=mMxGmmφGk=mMkGmm
53 fveq2 m=kGm=Gk
54 id m=km=k
55 53 54 fveq12d m=kGmm=Gkk
56 eqid mMMGmm=mMMGmm
57 fvex GkkV
58 55 56 57 fvmpt kMMmMMGmmk=Gkk
59 58 adantl φkMMmMMGmmk=Gkk
60 elfz1eq kMMk=M
61 60 adantl φkMMk=M
62 61 fveq2d φkMMGk=GM
63 62 fveq1d φkMMGkk=GMk
64 59 63 eqtr2d φkMMGMk=mMMGmmk
65 64 ex φkMMGMk=mMMGmmk
66 12 65 ralrimi φkMMGMk=mMMGmmk
67 14 ffnd φGMFnMM
68 fvex GmmV
69 68 56 fnmpti mMMGmmFnMM
70 eqfnfv GMFnMMmMMGmmFnMMGM=mMMGmmkMMGMk=mMMGmmk
71 67 69 70 sylancl φGM=mMMGmmkMMGMk=mMMGmmk
72 66 71 mpbird φGM=mMMGmm
73 72 a1i MφGM=mMMGmm
74 1 eleq2i wZwM
75 13 ffvelcdmda φwZGwJ
76 simpr φwZwZ
77 3simpa h:Mk+1AGw=hMkσh:Mk+1AGw=hMk
78 77 reximi kZh:Mk+1AGw=hMkσkZh:Mk+1AGw=hMk
79 78 ss2abi h|kZh:Mk+1AGw=hMkσh|kZh:Mk+1AGw=hMk
80 1 fvexi ZV
81 nfv kwZ
82 12 81 nfan kφwZ
83 6 adantr φwZAV
84 simpl h:Mk+1AGw=hMkh:Mk+1A
85 ovex Mk+1V
86 elmapg AVMk+1VhAMk+1h:Mk+1A
87 85 86 mpan2 AVhAMk+1h:Mk+1A
88 84 87 imbitrrid AVh:Mk+1AGw=hMkhAMk+1
89 88 abssdv AVh|h:Mk+1AGw=hMkAMk+1
90 83 89 syl φwZh|h:Mk+1AGw=hMkAMk+1
91 ovex AMk+1V
92 ssexg h|h:Mk+1AGw=hMkAMk+1AMk+1Vh|h:Mk+1AGw=hMkV
93 90 91 92 sylancl φwZh|h:Mk+1AGw=hMkV
94 93 a1d φwZkZh|h:Mk+1AGw=hMkV
95 82 94 ralrimi φwZkZh|h:Mk+1AGw=hMkV
96 abrexex2g ZVkZh|h:Mk+1AGw=hMkVh|kZh:Mk+1AGw=hMkV
97 80 95 96 sylancr φwZh|kZh:Mk+1AGw=hMkV
98 ssexg h|kZh:Mk+1AGw=hMkσh|kZh:Mk+1AGw=hMkh|kZh:Mk+1AGw=hMkVh|kZh:Mk+1AGw=hMkσV
99 79 97 98 sylancr φwZh|kZh:Mk+1AGw=hMkσV
100 eqeq1 x=Gwx=hMkGw=hMk
101 100 3anbi2d x=Gwh:Mk+1Ax=hMkσh:Mk+1AGw=hMkσ
102 101 rexbidv x=GwkZh:Mk+1Ax=hMkσkZh:Mk+1AGw=hMkσ
103 102 abbidv x=Gwh|kZh:Mk+1Ax=hMkσ=h|kZh:Mk+1AGw=hMkσ
104 103 eleq1d x=Gwh|kZh:Mk+1Ax=hMkσVh|kZh:Mk+1AGw=hMkσV
105 oveq2 x=GwwFx=wFGw
106 105 103 eqeq12d x=GwwFx=h|kZh:Mk+1Ax=hMkσwFGw=h|kZh:Mk+1AGw=hMkσ
107 104 106 imbi12d x=Gwh|kZh:Mk+1Ax=hMkσVwFx=h|kZh:Mk+1Ax=hMkσh|kZh:Mk+1AGw=hMkσVwFGw=h|kZh:Mk+1AGw=hMkσ
108 107 imbi2d x=GwwZh|kZh:Mk+1Ax=hMkσVwFx=h|kZh:Mk+1Ax=hMkσwZh|kZh:Mk+1AGw=hMkσVwFGw=h|kZh:Mk+1AGw=hMkσ
109 11 ovmpt4g wZxJh|kZh:Mk+1Ax=hMkσVwFx=h|kZh:Mk+1Ax=hMkσ
110 109 3com12 xJwZh|kZh:Mk+1Ax=hMkσVwFx=h|kZh:Mk+1Ax=hMkσ
111 110 3exp xJwZh|kZh:Mk+1Ax=hMkσVwFx=h|kZh:Mk+1Ax=hMkσ
112 108 111 vtoclga GwJwZh|kZh:Mk+1AGw=hMkσVwFGw=h|kZh:Mk+1AGw=hMkσ
113 75 76 99 112 syl3c φwZwFGw=h|kZh:Mk+1AGw=hMkσ
114 113 79 eqsstrdi φwZwFGwh|kZh:Mk+1AGw=hMk
115 114 15 sseldd φwZGw+1h|kZh:Mk+1AGw=hMk
116 fvex Gw+1V
117 feq1 h=Gw+1h:Mk+1AGw+1:Mk+1A
118 reseq1 h=Gw+1hMk=Gw+1Mk
119 118 eqeq2d h=Gw+1Gw=hMkGw=Gw+1Mk
120 117 119 anbi12d h=Gw+1h:Mk+1AGw=hMkGw+1:Mk+1AGw=Gw+1Mk
121 120 rexbidv h=Gw+1kZh:Mk+1AGw=hMkkZGw+1:Mk+1AGw=Gw+1Mk
122 116 121 elab Gw+1h|kZh:Mk+1AGw=hMkkZGw+1:Mk+1AGw=Gw+1Mk
123 115 122 sylib φwZkZGw+1:Mk+1AGw=Gw+1Mk
124 nfv kGw=mMwGmmGw+1=mMw+1Gmm
125 simprl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1:Mk+1A
126 fzssp1 MkMk+1
127 fssres Gw+1:Mk+1AMkMk+1Gw+1Mk:MkA
128 125 126 127 sylancl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1Mk:MkA
129 128 fdmd φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmdomGw+1Mk=Mk
130 eqid mMwGmm=mMwGmm
131 68 130 fnmpti mMwGmmFnMw
132 simprr φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1Mk=mMwGmm
133 132 fneq1d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1MkFnMwmMwGmmFnMw
134 131 133 mpbiri φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1MkFnMw
135 134 fndmd φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmdomGw+1Mk=Mw
136 129 135 eqtr3d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmMk=Mw
137 simplr φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmkZ
138 137 1 eleqtrdi φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmkM
139 fzopth kMMk=MwM=Mk=w
140 138 139 syl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmMk=MwM=Mk=w
141 136 140 mpbid φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmM=Mk=w
142 141 simprd φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmk=w
143 142 oveq1d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmk+1=w+1
144 143 oveq2d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmMk+1=Mw+1
145 elfzp1 kMxMk+1xMkx=k+1
146 138 145 syl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmxMk+1xMkx=k+1
147 136 reseq2d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmmMw+1GmmMk=mMw+1GmmMw
148 fzssp1 MwMw+1
149 resmpt MwMw+1mMw+1GmmMw=mMwGmm
150 148 149 ax-mp mMw+1GmmMw=mMwGmm
151 147 150 eqtr2di φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmmMwGmm=mMw+1GmmMk
152 132 151 eqtrd φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1Mk=mMw+1GmmMk
153 152 fveq1d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1Mkx=mMw+1GmmMkx
154 fvres xMkGw+1Mkx=Gw+1x
155 fvres xMkmMw+1GmmMkx=mMw+1Gmmx
156 154 155 eqeq12d xMkGw+1Mkx=mMw+1GmmMkxGw+1x=mMw+1Gmmx
157 153 156 syl5ibcom φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmxMkGw+1x=mMw+1Gmmx
158 143 eqeq2d φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmx=k+1x=w+1
159 142 138 eqeltrrd φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmwM
160 peano2uz wMw+1M
161 eluzfz2 w+1Mw+1Mw+1
162 fveq2 m=w+1Gm=Gw+1
163 id m=w+1m=w+1
164 162 163 fveq12d m=w+1Gmm=Gw+1w+1
165 eqid mMw+1Gmm=mMw+1Gmm
166 fvex Gw+1w+1V
167 164 165 166 fvmpt w+1Mw+1mMw+1Gmmw+1=Gw+1w+1
168 159 160 161 167 4syl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmmMw+1Gmmw+1=Gw+1w+1
169 168 eqcomd φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1w+1=mMw+1Gmmw+1
170 fveq2 x=w+1Gw+1x=Gw+1w+1
171 fveq2 x=w+1mMw+1Gmmx=mMw+1Gmmw+1
172 170 171 eqeq12d x=w+1Gw+1x=mMw+1GmmxGw+1w+1=mMw+1Gmmw+1
173 169 172 syl5ibrcom φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmx=w+1Gw+1x=mMw+1Gmmx
174 158 173 sylbid φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmx=k+1Gw+1x=mMw+1Gmmx
175 157 174 jaod φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmxMkx=k+1Gw+1x=mMw+1Gmmx
176 146 175 sylbid φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmxMk+1Gw+1x=mMw+1Gmmx
177 176 ralrimiv φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmxMk+1Gw+1x=mMw+1Gmmx
178 ffn Gw+1:Mk+1AGw+1FnMk+1
179 178 ad2antrl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1FnMk+1
180 68 165 fnmpti mMw+1GmmFnMw+1
181 eqfnfv2 Gw+1FnMk+1mMw+1GmmFnMw+1Gw+1=mMw+1GmmMk+1=Mw+1xMk+1Gw+1x=mMw+1Gmmx
182 179 180 181 sylancl φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1=mMw+1GmmMk+1=Mw+1xMk+1Gw+1x=mMw+1Gmmx
183 144 177 182 mpbir2and φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1=mMw+1Gmm
184 183 expr φwZkZGw+1:Mk+1AGw+1Mk=mMwGmmGw+1=mMw+1Gmm
185 eqeq1 Gw=Gw+1MkGw=mMwGmmGw+1Mk=mMwGmm
186 185 imbi1d Gw=Gw+1MkGw=mMwGmmGw+1=mMw+1GmmGw+1Mk=mMwGmmGw+1=mMw+1Gmm
187 184 186 syl5ibrcom φwZkZGw+1:Mk+1AGw=Gw+1MkGw=mMwGmmGw+1=mMw+1Gmm
188 187 expimpd φwZkZGw+1:Mk+1AGw=Gw+1MkGw=mMwGmmGw+1=mMw+1Gmm
189 188 ex φwZkZGw+1:Mk+1AGw=Gw+1MkGw=mMwGmmGw+1=mMw+1Gmm
190 82 124 189 rexlimd φwZkZGw+1:Mk+1AGw=Gw+1MkGw=mMwGmmGw+1=mMw+1Gmm
191 123 190 mpd φwZGw=mMwGmmGw+1=mMw+1Gmm
192 191 expcom wZφGw=mMwGmmGw+1=mMw+1Gmm
193 74 192 sylbir wMφGw=mMwGmmGw+1=mMw+1Gmm
194 193 a2d wMφGw=mMwGmmφGw+1=mMw+1Gmm
195 37 42 47 52 73 194 uzind4 kMφGk=mMkGmm
196 195 1 eleq2s kZφGk=mMkGmm
197 196 impcom φkZGk=mMkGmm
198 197 dmeqd φkZdomGk=dommMkGmm
199 dmmptg mMkGmmVdommMkGmm=Mk
200 68 a1i mMkGmmV
201 199 200 mprg dommMkGmm=Mk
202 198 201 eqtrdi φkZdomGk=Mk
203 202 eqeq1d φkZdomGk=MnMk=Mn
204 simpr φkZkZ
205 204 1 eleqtrdi φkZkM
206 fzopth kMMk=MnM=Mk=n
207 205 206 syl φkZMk=MnM=Mk=n
208 203 207 bitrd φkZdomGk=MnM=Mk=n
209 simpr M=Mk=nk=n
210 208 209 syl6bi φkZdomGk=Mnk=n
211 32 210 syl5 φkZGk:MnA[˙Gk/g]˙ψk=n
212 oveq2 n=kMn=Mk
213 212 feq2d n=kGk:MnAGk:MkA
214 4 sbcbidv n=k[˙Gk/g]˙ψ[˙Gk/g]˙θ
215 213 214 anbi12d n=kGk:MnA[˙Gk/g]˙ψGk:MkA[˙Gk/g]˙θ
216 215 equcoms k=nGk:MnA[˙Gk/g]˙ψGk:MkA[˙Gk/g]˙θ
217 216 biimpcd Gk:MnA[˙Gk/g]˙ψk=nGk:MkA[˙Gk/g]˙θ
218 211 217 sylcom φkZGk:MnA[˙Gk/g]˙ψGk:MkA[˙Gk/g]˙θ
219 218 rexlimdvw φkZnZGk:MnA[˙Gk/g]˙ψGk:MkA[˙Gk/g]˙θ
220 30 219 mpd φkZGk:MkA[˙Gk/g]˙θ
221 220 simpld φkZGk:MkA
222 eluzfz2 kMkMk
223 205 222 syl φkZkMk
224 221 223 ffvelcdmd φkZGkkA
225 55 cbvmptv mZGmm=kZGkk
226 12 224 225 fmptdf φmZGmm:ZA
227 220 simprd φkZ[˙Gk/g]˙θ
228 197 227 sbceq1dd φkZ[˙mMkGmm/g]˙θ
229 228 ex φkZ[˙mMkGmm/g]˙θ
230 12 229 ralrimi φkZ[˙mMkGmm/g]˙θ
231 mpteq1 Mn=MkmMnGmm=mMkGmm
232 dfsbcq mMnGmm=mMkGmm[˙mMnGmm/g]˙ψ[˙mMkGmm/g]˙ψ
233 212 231 232 3syl n=k[˙mMnGmm/g]˙ψ[˙mMkGmm/g]˙ψ
234 4 sbcbidv n=k[˙mMkGmm/g]˙ψ[˙mMkGmm/g]˙θ
235 233 234 bitrd n=k[˙mMnGmm/g]˙ψ[˙mMkGmm/g]˙θ
236 235 cbvralvw nZ[˙mMnGmm/g]˙ψkZ[˙mMkGmm/g]˙θ
237 230 236 sylibr φnZ[˙mMnGmm/g]˙ψ
238 80 mptex mZGmmV
239 feq1 f=mZGmmf:ZAmZGmm:ZA
240 vex fV
241 240 resex fMnV
242 241 2 sbcie [˙fMn/g]˙ψχ
243 reseq1 f=mZGmmfMn=mZGmmMn
244 fzssuz MnM
245 244 1 sseqtrri MnZ
246 resmpt MnZmZGmmMn=mMnGmm
247 245 246 ax-mp mZGmmMn=mMnGmm
248 243 247 eqtrdi f=mZGmmfMn=mMnGmm
249 248 sbceq1d f=mZGmm[˙fMn/g]˙ψ[˙mMnGmm/g]˙ψ
250 242 249 bitr3id f=mZGmmχ[˙mMnGmm/g]˙ψ
251 250 ralbidv f=mZGmmnZχnZ[˙mMnGmm/g]˙ψ
252 239 251 anbi12d f=mZGmmf:ZAnZχmZGmm:ZAnZ[˙mMnGmm/g]˙ψ
253 238 252 spcev mZGmm:ZAnZ[˙mMnGmm/g]˙ψff:ZAnZχ
254 226 237 253 syl2anc φff:ZAnZχ