Metamath Proof Explorer


Theorem xkoinjcn

Description: Continuity of "injection", i.e. currying, as a function on continuous function spaces. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis xkoinjcn.3 F=xXyYyx
Assertion xkoinjcn RTopOnXSTopOnYFRCnS×tR^koS

Proof

Step Hyp Ref Expression
1 xkoinjcn.3 F=xXyYyx
2 simplr RTopOnXSTopOnYxXSTopOnY
3 2 cnmptid RTopOnXSTopOnYxXyYySCnS
4 simpll RTopOnXSTopOnYxXRTopOnX
5 simpr RTopOnXSTopOnYxXxX
6 2 4 5 cnmptc RTopOnXSTopOnYxXyYxSCnR
7 2 3 6 cnmpt1t RTopOnXSTopOnYxXyYyxSCnS×tR
8 7 1 fmptd RTopOnXSTopOnYF:XSCnS×tR
9 eqid S=S
10 eqid w𝒫S|S𝑡wComp=w𝒫S|S𝑡wComp
11 eqid kw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv=kw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv
12 9 10 11 xkobval rankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv=z|k𝒫SvS×tRS𝑡kCompz=fSCnS×tR|fkv
13 12 eqabri zrankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkvk𝒫SvS×tRS𝑡kCompz=fSCnS×tR|fkv
14 simpll RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompRTopOnXSTopOnY
15 14 7 sylan RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXyYyxSCnS×tR
16 imaeq1 f=yYyxfk=yYyxk
17 16 sseq1d f=yYyxfkvyYyxkv
18 17 elrab3 yYyxSCnS×tRyYyxfSCnS×tR|fkvyYyxkv
19 15 18 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXyYyxfSCnS×tR|fkvyYyxkv
20 funmpt FunyYyx
21 simplrl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompk𝒫S
22 21 elpwid RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompkS
23 14 simprd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompSTopOnY
24 toponuni STopOnYY=S
25 23 24 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompY=S
26 22 25 sseqtrrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompkY
27 26 adantr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXkY
28 dmmptg yYyxVdomyYyx=Y
29 opex yxV
30 29 a1i yYyxV
31 28 30 mprg domyYyx=Y
32 27 31 sseqtrrdi RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXkdomyYyx
33 funimass4 FunyYyxkdomyYyxyYyxkvzkyYyxzv
34 20 32 33 sylancr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXyYyxkvzkyYyxzv
35 27 sselda RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXzkzY
36 opeq1 y=zyx=zx
37 eqid yYyx=yYyx
38 opex zxV
39 36 37 38 fvmpt zYyYyxz=zx
40 35 39 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXzkyYyxz=zx
41 40 eleq1d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXzkyYyxzvzxv
42 vex xV
43 opeq2 w=xzw=zx
44 43 eleq1d w=xzwvzxv
45 42 44 ralsn wxzwvzxv
46 41 45 bitr4di RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXzkyYyxzvwxzwv
47 46 ralbidva RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXzkyYyxzvzkwxzwv
48 dfss3 k×xvtk×xtv
49 eleq1 t=zwtvzwv
50 49 ralxp tk×xtvzkwxzwv
51 48 50 bitri k×xvzkwxzwv
52 47 51 bitr4di RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXzkyYyxzvk×xv
53 19 34 52 3bitrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxXyYyxfSCnS×tR|fkvk×xv
54 53 rabbidva RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxX|yYyxfSCnS×tR|fkv=xX|k×xv
55 sneq x=wx=w
56 55 xpeq2d x=wk×x=k×w
57 56 sseq1d x=wk×xvk×wv
58 57 elrab wxX|k×xvwXk×wv
59 eqid S𝑡k=S𝑡k
60 eqid R=R
61 simplr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS𝑡kComp
62 simpll RTopOnXSTopOnYk𝒫SvS×tRRTopOnX
63 62 ad2antrr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvRTopOnX
64 topontop RTopOnXRTop
65 63 64 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvRTop
66 topontop STopOnYSTop
67 66 adantl RTopOnXSTopOnYSTop
68 64 adantr RTopOnXSTopOnYRTop
69 txtop STopRTopS×tRTop
70 67 68 69 syl2anc RTopOnXSTopOnYS×tRTop
71 70 ad3antrrr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS×tRTop
72 vex kV
73 toponmax RTopOnXXR
74 63 73 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvXR
75 xpexg kVXRk×XV
76 72 74 75 sylancr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvk×XV
77 simprr RTopOnXSTopOnYk𝒫SvS×tRvS×tR
78 77 ad2antrr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvvS×tR
79 elrestr S×tRTopk×XVvS×tRvk×XS×tR𝑡k×X
80 71 76 78 79 syl3anc RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvvk×XS×tR𝑡k×X
81 67 ad3antrrr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvSTop
82 72 a1i RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvkV
83 txrest STopRTopkVXRS×tR𝑡k×X=S𝑡k×tR𝑡X
84 81 65 82 74 83 syl22anc RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS×tR𝑡k×X=S𝑡k×tR𝑡X
85 toponuni RTopOnXX=R
86 63 85 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvX=R
87 86 oveq2d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvR𝑡X=R𝑡R
88 60 restid RTopOnXR𝑡R=R
89 63 88 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvR𝑡R=R
90 87 89 eqtrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvR𝑡X=R
91 90 oveq2d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS𝑡k×tR𝑡X=S𝑡k×tR
92 84 91 eqtrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS×tR𝑡k×X=S𝑡k×tR
93 80 92 eleqtrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvvk×XS𝑡k×tR
94 23 adantr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvSTopOnY
95 26 adantr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvkY
96 resttopon STopOnYkYS𝑡kTopOnk
97 94 95 96 syl2anc RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS𝑡kTopOnk
98 toponuni S𝑡kTopOnkk=S𝑡k
99 97 98 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvk=S𝑡k
100 99 xpeq1d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvk×w=S𝑡k×w
101 simprr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvk×wv
102 simprl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvwX
103 102 snssd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvwX
104 xpss2 wXk×wk×X
105 103 104 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvk×wk×X
106 101 105 ssind RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvk×wvk×X
107 100 106 eqsstrrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvS𝑡k×wvk×X
108 102 86 eleqtrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvwR
109 59 60 61 65 93 107 108 txtube RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRwrS𝑡k×rvk×X
110 toponss RTopOnXrRrX
111 63 110 sylan RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRrX
112 ssrab rxX|k×xvrXxrk×xv
113 112 baib rXrxX|k×xvxrk×xv
114 111 113 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRrxX|k×xvxrk×xv
115 xpss2 rXk×rk×X
116 111 115 syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRk×rk×X
117 116 biantrud RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRk×rvk×rvk×rk×X
118 iunid xrx=r
119 118 xpeq2i k×xrx=k×r
120 xpiundi k×xrx=xrk×x
121 119 120 eqtr3i k×r=xrk×x
122 121 sseq1i k×rvxrk×xv
123 iunss xrk×xvxrk×xv
124 122 123 bitri k×rvxrk×xv
125 ssin k×rvk×rk×Xk×rvk×X
126 117 124 125 3bitr3g RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRxrk×xvk×rvk×X
127 99 adantr RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRk=S𝑡k
128 127 xpeq1d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRk×r=S𝑡k×r
129 128 sseq1d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRk×rvk×XS𝑡k×rvk×X
130 114 126 129 3bitrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRrxX|k×xvS𝑡k×rvk×X
131 130 anbi2d RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRwrrxX|k×xvwrS𝑡k×rvk×X
132 131 rexbidva RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRwrrxX|k×xvrRwrS𝑡k×rvk×X
133 109 132 mpbird RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwXk×wvrRwrrxX|k×xv
134 58 133 sylan2b RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwxX|k×xvrRwrrxX|k×xv
135 134 ralrimiva RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompwxX|k×xvrRwrrxX|k×xv
136 eltop2 RTopxX|k×xvRwxX|k×xvrRwrrxX|k×xv
137 14 68 136 3syl RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxX|k×xvRwxX|k×xvrRwrrxX|k×xv
138 135 137 mpbird RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxX|k×xvR
139 54 138 eqeltrd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompxX|yYyxfSCnS×tR|fkvR
140 imaeq2 z=fSCnS×tR|fkvF-1z=F-1fSCnS×tR|fkv
141 1 mptpreima F-1fSCnS×tR|fkv=xX|yYyxfSCnS×tR|fkv
142 140 141 eqtrdi z=fSCnS×tR|fkvF-1z=xX|yYyxfSCnS×tR|fkv
143 142 eleq1d z=fSCnS×tR|fkvF-1zRxX|yYyxfSCnS×tR|fkvR
144 139 143 syl5ibrcom RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompz=fSCnS×tR|fkvF-1zR
145 144 expimpd RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompz=fSCnS×tR|fkvF-1zR
146 145 rexlimdvva RTopOnXSTopOnYk𝒫SvS×tRS𝑡kCompz=fSCnS×tR|fkvF-1zR
147 13 146 biimtrid RTopOnXSTopOnYzrankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkvF-1zR
148 147 ralrimiv RTopOnXSTopOnYzrankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkvF-1zR
149 simpl RTopOnXSTopOnYRTopOnX
150 ovex SCnS×tRV
151 150 pwex 𝒫SCnS×tRV
152 9 10 11 xkotf kw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv:w𝒫S|S𝑡wComp×S×tR𝒫SCnS×tR
153 frn kw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv:w𝒫S|S𝑡wComp×S×tR𝒫SCnS×tRrankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv𝒫SCnS×tR
154 152 153 ax-mp rankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv𝒫SCnS×tR
155 151 154 ssexi rankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkvV
156 155 a1i RTopOnXSTopOnYrankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkvV
157 9 10 11 xkoval STopS×tRTopS×tR^koS=topGenfirankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv
158 67 70 157 syl2anc RTopOnXSTopOnYS×tR^koS=topGenfirankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkv
159 eqid S×tR^koS=S×tR^koS
160 159 xkotopon STopS×tRTopS×tR^koSTopOnSCnS×tR
161 67 70 160 syl2anc RTopOnXSTopOnYS×tR^koSTopOnSCnS×tR
162 149 156 158 161 subbascn RTopOnXSTopOnYFRCnS×tR^koSF:XSCnS×tRzrankw𝒫S|S𝑡wComp,vS×tRfSCnS×tR|fkvF-1zR
163 8 148 162 mpbir2and RTopOnXSTopOnYFRCnS×tR^koS