Metamath Proof Explorer


Theorem cflim2

Description: The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Hypothesis cflim2.1 AV
Assertion cflim2 LimALimcfA

Proof

Step Hyp Ref Expression
1 cflim2.1 AV
2 rabid yy𝒫A|y=Ay𝒫Ay=A
3 velpw y𝒫AyA
4 limord LimAOrdA
5 ordsson OrdAAOn
6 sstr yAAOnyOn
7 6 expcom AOnyAyOn
8 4 5 7 3syl LimAyAyOn
9 8 imp LimAyAyOn
10 9 3adant3 LimAyAy=AyOn
11 ssel2 yOnsysOn
12 eloni sOnOrds
13 ordirr Ords¬ss
14 11 12 13 3syl yOnsy¬ss
15 ssel yssyss
16 15 com12 syysss
17 16 adantl yOnsyysss
18 14 17 mtod yOnsy¬ys
19 10 18 sylan LimAyAy=Asy¬ys
20 simpl2 LimAyAy=AsyyA
21 sstr yAAsys
22 20 21 sylan LimAyAy=AsyAsys
23 19 22 mtand LimAyAy=Asy¬As
24 simpl3 LimAyAy=Asyy=A
25 24 sseq1d LimAyAy=AsyysAs
26 23 25 mtbird LimAyAy=Asy¬ys
27 unissb ystyts
28 26 27 sylnib LimAyAy=Asy¬tyts
29 28 nrexdv LimAyAy=A¬sytyts
30 ssel yOnsysOn
31 ssel yOntytOn
32 ontri1 tOnsOnts¬st
33 32 ancoms sOntOnts¬st
34 vex tV
35 vex sV
36 34 35 brcnv tE-1ssEt
37 epel sEtst
38 36 37 bitri tE-1sst
39 38 notbii ¬tE-1s¬st
40 33 39 bitr4di sOntOnts¬tE-1s
41 40 a1i yOnsOntOnts¬tE-1s
42 30 31 41 syl2and yOnsytyts¬tE-1s
43 42 impl yOnsytyts¬tE-1s
44 43 ralbidva yOnsytytsty¬tE-1s
45 44 rexbidva yOnsytytssyty¬tE-1s
46 10 45 syl LimAyAy=Asytytssyty¬tE-1s
47 29 46 mtbid LimAyAy=A¬syty¬tE-1s
48 vex yV
49 48 a1i LimAyAy=AcardyωyV
50 epweon EWeOn
51 wess yOnEWeOnEWey
52 50 51 mpi yOnEWey
53 weso EWeyEOry
54 52 53 syl yOnEOry
55 cnvso EOryE-1Ory
56 54 55 sylib yOnE-1Ory
57 onssnum yVyOnydomcard
58 48 57 mpan yOnydomcard
59 cardid2 ydomcardcardyy
60 ensym cardyyycardy
61 58 59 60 3syl yOnycardy
62 nnsdom cardyωcardyω
63 ensdomtr ycardycardyωyω
64 61 62 63 syl2an yOncardyωyω
65 isfinite yFinyω
66 64 65 sylibr yOncardyωyFin
67 wofi E-1OryyFinE-1Wey
68 56 66 67 syl2an2r yOncardyωE-1Wey
69 10 68 sylan LimAyAy=AcardyωE-1Wey
70 wefr E-1WeyE-1Fry
71 69 70 syl LimAyAy=AcardyωE-1Fry
72 ssidd LimAyAy=Acardyωyy
73 unieq y=y=
74 uni0 =
75 73 74 eqtrdi y=y=
76 eqeq1 y=Ay=A=
77 75 76 imbitrid y=Ay=A=
78 nlim0 ¬Lim
79 limeq A=LimALim
80 78 79 mtbiri A=¬LimA
81 77 80 syl6 y=Ay=¬LimA
82 81 necon2ad y=ALimAy
83 82 impcom LimAy=Ay
84 83 3adant2 LimAyAy=Ay
85 84 adantr LimAyAy=Acardyωy
86 fri yVE-1Fryyyysyty¬tE-1s
87 49 71 72 85 86 syl22anc LimAyAy=Acardyωsyty¬tE-1s
88 47 87 mtand LimAyAy=A¬cardyω
89 cardon cardyOn
90 eloni cardyOnOrdcardy
91 ordom Ordω
92 ordtri1 OrdωOrdcardyωcardy¬cardyω
93 91 92 mpan Ordcardyωcardy¬cardyω
94 89 90 93 mp2b ωcardy¬cardyω
95 88 94 sylibr LimAyAy=Aωcardy
96 3 95 syl3an2b LimAy𝒫Ay=Aωcardy
97 96 3expb LimAy𝒫Ay=Aωcardy
98 2 97 sylan2b LimAyy𝒫A|y=Aωcardy
99 98 ralrimiva LimAyy𝒫A|y=Aωcardy
100 ssiin ωyy𝒫A|y=Acardyyy𝒫A|y=Aωcardy
101 99 100 sylibr LimAωyy𝒫A|y=Acardy
102 1 cflim3 LimAcfA=yy𝒫A|y=Acardy
103 101 102 sseqtrrd LimAωcfA
104 fvex cardyV
105 104 dfiin2 yy𝒫A|y=Acardy=x|yy𝒫A|y=Ax=cardy
106 102 105 eqtrdi LimAcfA=x|yy𝒫A|y=Ax=cardy
107 cardlim ωcardyLimcardy
108 sseq2 x=cardyωxωcardy
109 limeq x=cardyLimxLimcardy
110 108 109 bibi12d x=cardyωxLimxωcardyLimcardy
111 107 110 mpbiri x=cardyωxLimx
112 111 rexlimivw yy𝒫A|y=Ax=cardyωxLimx
113 112 ss2abi x|yy𝒫A|y=Ax=cardyx|ωxLimx
114 eleq1 x=cardyxOncardyOn
115 89 114 mpbiri x=cardyxOn
116 115 rexlimivw yy𝒫A|y=Ax=cardyxOn
117 116 abssi x|yy𝒫A|y=Ax=cardyOn
118 fvex cfAV
119 106 118 eqeltrrdi LimAx|yy𝒫A|y=Ax=cardyV
120 intex x|yy𝒫A|y=Ax=cardyx|yy𝒫A|y=Ax=cardyV
121 119 120 sylibr LimAx|yy𝒫A|y=Ax=cardy
122 onint x|yy𝒫A|y=Ax=cardyOnx|yy𝒫A|y=Ax=cardyx|yy𝒫A|y=Ax=cardyx|yy𝒫A|y=Ax=cardy
123 117 121 122 sylancr LimAx|yy𝒫A|y=Ax=cardyx|yy𝒫A|y=Ax=cardy
124 113 123 sselid LimAx|yy𝒫A|y=Ax=cardyx|ωxLimx
125 106 124 eqeltrd LimAcfAx|ωxLimx
126 sseq2 x=cfAωxωcfA
127 limeq x=cfALimxLimcfA
128 126 127 bibi12d x=cfAωxLimxωcfALimcfA
129 118 128 elab cfAx|ωxLimxωcfALimcfA
130 125 129 sylib LimAωcfALimcfA
131 103 130 mpbid LimALimcfA
132 eloni AOnOrdA
133 ordzsl OrdAA=xOnA=sucxLimA
134 132 133 sylib AOnA=xOnA=sucxLimA
135 df-3or A=xOnA=sucxLimAA=xOnA=sucxLimA
136 orcom A=xOnA=sucxLimALimAA=xOnA=sucx
137 df-or LimAA=xOnA=sucx¬LimAA=xOnA=sucx
138 135 136 137 3bitri A=xOnA=sucxLimA¬LimAA=xOnA=sucx
139 134 138 sylib AOn¬LimAA=xOnA=sucx
140 fveq2 A=cfA=cf
141 cf0 cf=
142 140 141 eqtrdi A=cfA=
143 limeq cfA=LimcfALim
144 142 143 syl A=LimcfALim
145 78 144 mtbiri A=¬LimcfA
146 1n0 1𝑜
147 df1o2 1𝑜=
148 147 unieqi 1𝑜=
149 0ex V
150 149 unisn =
151 148 150 eqtri 1𝑜=
152 146 151 neeqtrri 1𝑜1𝑜
153 limuni Lim1𝑜1𝑜=1𝑜
154 153 necon3ai 1𝑜1𝑜¬Lim1𝑜
155 152 154 ax-mp ¬Lim1𝑜
156 fveq2 A=sucxcfA=cfsucx
157 cfsuc xOncfsucx=1𝑜
158 156 157 sylan9eqr xOnA=sucxcfA=1𝑜
159 limeq cfA=1𝑜LimcfALim1𝑜
160 158 159 syl xOnA=sucxLimcfALim1𝑜
161 155 160 mtbiri xOnA=sucx¬LimcfA
162 161 rexlimiva xOnA=sucx¬LimcfA
163 145 162 jaoi A=xOnA=sucx¬LimcfA
164 139 163 syl6 AOn¬LimA¬LimcfA
165 164 con4d AOnLimcfALimA
166 cff cf:OnOn
167 166 fdmi domcf=On
168 167 eleq2i AdomcfAOn
169 ndmfv ¬AdomcfcfA=
170 168 169 sylnbir ¬AOncfA=
171 170 143 syl ¬AOnLimcfALim
172 78 171 mtbiri ¬AOn¬LimcfA
173 172 pm2.21d ¬AOnLimcfALimA
174 165 173 pm2.61i LimcfALimA
175 131 174 impbii LimALimcfA