Metamath Proof Explorer


Theorem circlemeth

Description: The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses circlemeth.n φN0
circlemeth.s φS
circlemeth.l φL:0..^S
Assertion circlemeth φcreprSNa0..^SLaca=01a0..^SLavtsNxei2π- Nxdx

Proof

Step Hyp Ref Expression
1 circlemeth.n φN0
2 circlemeth.s φS
3 circlemeth.l φL:0..^S
4 1 adantr φx01N0
5 ioossre 01
6 ax-resscn
7 5 6 sstri 01
8 7 a1i φ01
9 8 sselda φx01x
10 2 nnnn0d φS0
11 10 adantr φx01S0
12 3 adantr φx01L:0..^S
13 4 9 11 12 vtsprod φx01a0..^SLavtsNx=m=0S Nc1NreprSma0..^SLacaei2πmx
14 13 oveq1d φx01a0..^SLavtsNxei2π- Nx=m=0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx
15 fzfid φx010S NFin
16 ax-icn i
17 2cn 2
18 picn π
19 17 18 mulcli 2π
20 16 19 mulcli i2π
21 20 a1i φx01i2π
22 1 nn0cnd φN
23 22 negcld φN
24 23 ralrimivw φx01N
25 24 r19.21bi φx01N
26 25 9 mulcld φx01- Nx
27 21 26 mulcld φx01i2π- Nx
28 27 efcld φx01ei2π- Nx
29 fz1ssnn 1N
30 29 a1i φx01m0S N1N
31 simpr φm0S Nm0S N
32 31 elfzelzd φm0S Nm
33 32 adantlr φx01m0S Nm
34 11 adantr φx01m0S NS0
35 fzfid φx01m0S N1NFin
36 30 33 34 35 reprfi φx01m0S N1NreprSmFin
37 fzofi 0..^SFin
38 37 a1i φx01m0S Nc1NreprSm0..^SFin
39 1 ad3antrrr φm0S Nc1NreprSma0..^SN0
40 10 ad3antrrr φm0S Nc1NreprSma0..^SS0
41 32 zcnd φm0S Nm
42 41 ad2antrr φm0S Nc1NreprSma0..^Sm
43 3 ad3antrrr φm0S Nc1NreprSma0..^SL:0..^S
44 simpr φm0S Nc1NreprSma0..^Sa0..^S
45 29 a1i φm0S Nc1NreprSm1N
46 32 adantr φm0S Nc1NreprSmm
47 10 ad2antrr φm0S Nc1NreprSmS0
48 simpr φm0S Nc1NreprSmc1NreprSm
49 45 46 47 48 reprf φm0S Nc1NreprSmc:0..^S1N
50 49 ffvelcdmda φm0S Nc1NreprSma0..^Sca1N
51 29 50 sselid φm0S Nc1NreprSma0..^Sca
52 39 40 42 43 44 51 breprexplemb φm0S Nc1NreprSma0..^SLaca
53 52 adantl3r φx01m0S Nc1NreprSma0..^SLaca
54 38 53 fprodcl φx01m0S Nc1NreprSma0..^SLaca
55 20 a1i φx01m0S Ni2π
56 33 zcnd φx01m0S Nm
57 9 adantr φx01m0S Nx
58 56 57 mulcld φx01m0S Nmx
59 55 58 mulcld φx01m0S Ni2πmx
60 59 efcld φx01m0S Nei2πmx
61 60 adantr φx01m0S Nc1NreprSmei2πmx
62 54 61 mulcld φx01m0S Nc1NreprSma0..^SLacaei2πmx
63 36 62 fsumcl φx01m0S Nc1NreprSma0..^SLacaei2πmx
64 15 28 63 fsummulc1 φx01m=0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=m=0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx
65 28 adantr φx01m0S Nei2π- Nx
66 36 65 62 fsummulc1 φx01m0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=c1NreprSma0..^SLacaei2πmxei2π- Nx
67 65 adantr φx01m0S Nc1NreprSmei2π- Nx
68 54 61 67 mulassd φx01m0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=a0..^SLacaei2πmxei2π- Nx
69 27 adantr φx01m0S Ni2π- Nx
70 efadd i2πmxi2π- Nxei2πmx+i2π- Nx=ei2πmxei2π- Nx
71 59 69 70 syl2anc φx01m0S Nei2πmx+i2π- Nx=ei2πmxei2π- Nx
72 26 adantr φx01m0S N- Nx
73 55 58 72 adddid φx01m0S Ni2πmx+- Nx=i2πmx+i2π- Nx
74 25 adantr φx01m0S NN
75 56 74 57 adddird φx01m0S Nm+- Nx=mx+- Nx
76 22 ad2antrr φx01m0S NN
77 56 76 negsubd φx01m0S Nm+- N=mN
78 77 oveq1d φx01m0S Nm+- Nx=mNx
79 75 78 eqtr3d φx01m0S Nmx+- Nx=mNx
80 79 oveq2d φx01m0S Ni2πmx+- Nx=i2πmNx
81 73 80 eqtr3d φx01m0S Ni2πmx+i2π- Nx=i2πmNx
82 81 fveq2d φx01m0S Nei2πmx+i2π- Nx=ei2πmNx
83 71 82 eqtr3d φx01m0S Nei2πmxei2π- Nx=ei2πmNx
84 83 oveq2d φx01m0S Na0..^SLacaei2πmxei2π- Nx=a0..^SLacaei2πmNx
85 84 adantr φx01m0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=a0..^SLacaei2πmNx
86 68 85 eqtrd φx01m0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=a0..^SLacaei2πmNx
87 86 sumeq2dv φx01m0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=c1NreprSma0..^SLacaei2πmNx
88 66 87 eqtrd φx01m0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=c1NreprSma0..^SLacaei2πmNx
89 88 sumeq2dv φx01m=0S Nc1NreprSma0..^SLacaei2πmxei2π- Nx=m=0S Nc1NreprSma0..^SLacaei2πmNx
90 14 64 89 3eqtrd φx01a0..^SLavtsNxei2π- Nx=m=0S Nc1NreprSma0..^SLacaei2πmNx
91 90 itgeq2dv φ01a0..^SLavtsNxei2π- Nxdx=01m=0S Nc1NreprSma0..^SLacaei2πmNxdx
92 ioombl 01domvol
93 92 a1i φ01domvol
94 fzfid φ0S NFin
95 sumex c1NreprSma0..^SLacaei2πmNxV
96 95 a1i φx01m0S Nc1NreprSma0..^SLacaei2πmNxV
97 93 adantr φm0S N01domvol
98 29 a1i φm0S N1N
99 10 adantr φm0S NS0
100 fzfid φm0S N1NFin
101 98 32 99 100 reprfi φm0S N1NreprSmFin
102 37 a1i φm0S Nx01c1NreprSm0..^SFin
103 52 adantllr φm0S Nx01c1NreprSma0..^SLaca
104 102 103 fprodcl φm0S Nx01c1NreprSma0..^SLaca
105 56 76 subcld φx01m0S NmN
106 105 57 mulcld φx01m0S NmNx
107 55 106 mulcld φx01m0S Ni2πmNx
108 107 an32s φm0S Nx01i2πmNx
109 108 adantr φm0S Nx01c1NreprSmi2πmNx
110 109 efcld φm0S Nx01c1NreprSmei2πmNx
111 104 110 mulcld φm0S Nx01c1NreprSma0..^SLacaei2πmNx
112 111 anasss φm0S Nx01c1NreprSma0..^SLacaei2πmNx
113 37 a1i φm0S Nc1NreprSm0..^SFin
114 113 52 fprodcl φm0S Nc1NreprSma0..^SLaca
115 fvex ei2πmNxV
116 115 a1i φm0S Nc1NreprSmx01ei2πmNxV
117 ioossicc 0101
118 117 a1i φm0S N0101
119 92 a1i φm0S N01domvol
120 115 a1i φm0S Nx01ei2πmNxV
121 0red φm0S N0
122 1red φm0S N1
123 22 adantr φm0S NN
124 41 123 subcld φm0S NmN
125 unitsscn 01
126 125 a1i φm0S N01
127 ssidd φm0S N
128 cncfmptc mN01x01mN:01cn
129 124 126 127 128 syl3anc φm0S Nx01mN:01cn
130 cncfmptid 01x01x:01cn
131 126 127 130 syl2anc φm0S Nx01x:01cn
132 129 131 mulcncf φm0S Nx01mNx:01cn
133 132 efmul2picn φm0S Nx01ei2πmNx:01cn
134 cniccibl 01x01ei2πmNx:01cnx01ei2πmNx𝐿1
135 121 122 133 134 syl3anc φm0S Nx01ei2πmNx𝐿1
136 118 119 120 135 iblss φm0S Nx01ei2πmNx𝐿1
137 136 adantr φm0S Nc1NreprSmx01ei2πmNx𝐿1
138 114 116 137 iblmulc2 φm0S Nc1NreprSmx01a0..^SLacaei2πmNx𝐿1
139 97 101 112 138 itgfsum φm0S Nx01c1NreprSma0..^SLacaei2πmNx𝐿101c1NreprSma0..^SLacaei2πmNxdx=c1NreprSm01a0..^SLacaei2πmNxdx
140 139 simpld φm0S Nx01c1NreprSma0..^SLacaei2πmNx𝐿1
141 93 94 96 140 itgfsum φx01m=0S Nc1NreprSma0..^SLacaei2πmNx𝐿101m=0S Nc1NreprSma0..^SLacaei2πmNxdx=m=0S N01c1NreprSma0..^SLacaei2πmNxdx
142 141 simprd φ01m=0S Nc1NreprSma0..^SLacaei2πmNxdx=m=0S N01c1NreprSma0..^SLacaei2πmNxdx
143 oveq2 ifmN=010=1c1NreprSma0..^SLacaifmN=010=c1NreprSma0..^SLaca1
144 oveq2 ifmN=010=0c1NreprSma0..^SLacaifmN=010=c1NreprSma0..^SLaca0
145 101 114 fsumcl φm0S Nc1NreprSma0..^SLaca
146 145 mulridd φm0S Nc1NreprSma0..^SLaca1=c1NreprSma0..^SLaca
147 145 mul01d φm0S Nc1NreprSma0..^SLaca0=0
148 143 144 146 147 ifeq3da φm0S NifmN=0c1NreprSma0..^SLaca0=c1NreprSma0..^SLacaifmN=010
149 velsn mNm=N
150 41 123 subeq0ad φm0S NmN=0m=N
151 149 150 bitr4id φm0S NmNmN=0
152 151 ifbid φm0S NifmNc1NreprSma0..^SLaca0=ifmN=0c1NreprSma0..^SLaca0
153 1 nn0zd φN
154 153 ad2antrr φm0S Nc1NreprSmN
155 46 154 zsubcld φm0S Nc1NreprSmmN
156 itgexpif mN01ei2πmNxdx=ifmN=010
157 155 156 syl φm0S Nc1NreprSm01ei2πmNxdx=ifmN=010
158 157 oveq2d φm0S Nc1NreprSma0..^SLaca01ei2πmNxdx=a0..^SLacaifmN=010
159 158 sumeq2dv φm0S Nc1NreprSma0..^SLaca01ei2πmNxdx=c1NreprSma0..^SLacaifmN=010
160 1cnd φm0S N1
161 0cnd φm0S N0
162 160 161 ifcld φm0S NifmN=010
163 101 162 114 fsummulc1 φm0S Nc1NreprSma0..^SLacaifmN=010=c1NreprSma0..^SLacaifmN=010
164 159 163 eqtr4d φm0S Nc1NreprSma0..^SLaca01ei2πmNxdx=c1NreprSma0..^SLacaifmN=010
165 148 152 164 3eqtr4rd φm0S Nc1NreprSma0..^SLaca01ei2πmNxdx=ifmNc1NreprSma0..^SLaca0
166 165 sumeq2dv φm=0S Nc1NreprSma0..^SLaca01ei2πmNxdx=m=0S NifmNc1NreprSma0..^SLaca0
167 0zd φ0
168 10 nn0zd φS
169 168 153 zmulcld φS N
170 1 nn0ge0d φ0N
171 nnmulge SN0NS N
172 2 1 171 syl2anc φNS N
173 167 169 153 170 172 elfzd φN0S N
174 173 snssd φN0S N
175 174 sselda φmNm0S N
176 175 145 syldan φmNc1NreprSma0..^SLaca
177 176 ralrimiva φmNc1NreprSma0..^SLaca
178 94 olcd φ0S N00S NFin
179 sumss2 N0S NmNc1NreprSma0..^SLaca0S N00S NFinmNc1NreprSma0..^SLaca=m=0S NifmNc1NreprSma0..^SLaca0
180 174 177 178 179 syl21anc φmNc1NreprSma0..^SLaca=m=0S NifmNc1NreprSma0..^SLaca0
181 29 a1i φ1N
182 fzfid φ1NFin
183 181 153 10 182 reprfi φ1NreprSNFin
184 37 a1i φc1NreprSN0..^SFin
185 1 ad2antrr φc1NreprSNa0..^SN0
186 10 ad2antrr φc1NreprSNa0..^SS0
187 22 ad2antrr φc1NreprSNa0..^SN
188 3 ad2antrr φc1NreprSNa0..^SL:0..^S
189 simpr φc1NreprSNa0..^Sa0..^S
190 29 a1i φc1NreprSN1N
191 153 adantr φc1NreprSNN
192 10 adantr φc1NreprSNS0
193 simpr φc1NreprSNc1NreprSN
194 190 191 192 193 reprf φc1NreprSNc:0..^S1N
195 194 ffvelcdmda φc1NreprSNa0..^Sca1N
196 29 195 sselid φc1NreprSNa0..^Sca
197 185 186 187 188 189 196 breprexplemb φc1NreprSNa0..^SLaca
198 184 197 fprodcl φc1NreprSNa0..^SLaca
199 183 198 fsumcl φc1NreprSNa0..^SLaca
200 oveq2 m=N1NreprSm=1NreprSN
201 200 sumeq1d m=Nc1NreprSma0..^SLaca=c1NreprSNa0..^SLaca
202 201 sumsn N0c1NreprSNa0..^SLacamNc1NreprSma0..^SLaca=c1NreprSNa0..^SLaca
203 1 199 202 syl2anc φmNc1NreprSma0..^SLaca=c1NreprSNa0..^SLaca
204 166 180 203 3eqtr2d φm=0S Nc1NreprSma0..^SLaca01ei2πmNxdx=c1NreprSNa0..^SLaca
205 139 simprd φm0S N01c1NreprSma0..^SLacaei2πmNxdx=c1NreprSm01a0..^SLacaei2πmNxdx
206 110 an32s φm0S Nc1NreprSmx01ei2πmNx
207 114 206 137 itgmulc2 φm0S Nc1NreprSma0..^SLaca01ei2πmNxdx=01a0..^SLacaei2πmNxdx
208 207 sumeq2dv φm0S Nc1NreprSma0..^SLaca01ei2πmNxdx=c1NreprSm01a0..^SLacaei2πmNxdx
209 205 208 eqtr4d φm0S N01c1NreprSma0..^SLacaei2πmNxdx=c1NreprSma0..^SLaca01ei2πmNxdx
210 209 sumeq2dv φm=0S N01c1NreprSma0..^SLacaei2πmNxdx=m=0S Nc1NreprSma0..^SLaca01ei2πmNxdx
211 1 10 reprfz1 φreprSN=1NreprSN
212 211 sumeq1d φcreprSNa0..^SLaca=c1NreprSNa0..^SLaca
213 204 210 212 3eqtr4d φm=0S N01c1NreprSma0..^SLacaei2πmNxdx=creprSNa0..^SLaca
214 91 142 213 3eqtrrd φcreprSNa0..^SLaca=01a0..^SLavtsNxei2π- Nxdx