| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circlemeth.n |
|
| 2 |
|
circlemeth.s |
|
| 3 |
|
circlemeth.l |
|
| 4 |
1
|
adantr |
|
| 5 |
|
ioossre |
|
| 6 |
|
ax-resscn |
|
| 7 |
5 6
|
sstri |
|
| 8 |
7
|
a1i |
|
| 9 |
8
|
sselda |
|
| 10 |
2
|
nnnn0d |
|
| 11 |
10
|
adantr |
|
| 12 |
3
|
adantr |
|
| 13 |
4 9 11 12
|
vtsprod |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
fzfid |
|
| 16 |
|
ax-icn |
|
| 17 |
|
2cn |
|
| 18 |
|
picn |
|
| 19 |
17 18
|
mulcli |
|
| 20 |
16 19
|
mulcli |
|
| 21 |
20
|
a1i |
|
| 22 |
1
|
nn0cnd |
|
| 23 |
22
|
negcld |
|
| 24 |
23
|
ralrimivw |
|
| 25 |
24
|
r19.21bi |
|
| 26 |
25 9
|
mulcld |
|
| 27 |
21 26
|
mulcld |
|
| 28 |
27
|
efcld |
|
| 29 |
|
fz1ssnn |
|
| 30 |
29
|
a1i |
|
| 31 |
|
simpr |
|
| 32 |
31
|
elfzelzd |
|
| 33 |
32
|
adantlr |
|
| 34 |
11
|
adantr |
|
| 35 |
|
fzfid |
|
| 36 |
30 33 34 35
|
reprfi |
|
| 37 |
|
fzofi |
|
| 38 |
37
|
a1i |
|
| 39 |
1
|
ad3antrrr |
|
| 40 |
10
|
ad3antrrr |
|
| 41 |
32
|
zcnd |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
3
|
ad3antrrr |
|
| 44 |
|
simpr |
|
| 45 |
29
|
a1i |
|
| 46 |
32
|
adantr |
|
| 47 |
10
|
ad2antrr |
|
| 48 |
|
simpr |
|
| 49 |
45 46 47 48
|
reprf |
|
| 50 |
49
|
ffvelcdmda |
|
| 51 |
29 50
|
sselid |
|
| 52 |
39 40 42 43 44 51
|
breprexplemb |
|
| 53 |
52
|
adantl3r |
|
| 54 |
38 53
|
fprodcl |
|
| 55 |
20
|
a1i |
|
| 56 |
33
|
zcnd |
|
| 57 |
9
|
adantr |
|
| 58 |
56 57
|
mulcld |
|
| 59 |
55 58
|
mulcld |
|
| 60 |
59
|
efcld |
|
| 61 |
60
|
adantr |
|
| 62 |
54 61
|
mulcld |
|
| 63 |
36 62
|
fsumcl |
|
| 64 |
15 28 63
|
fsummulc1 |
|
| 65 |
28
|
adantr |
|
| 66 |
36 65 62
|
fsummulc1 |
|
| 67 |
65
|
adantr |
|
| 68 |
54 61 67
|
mulassd |
|
| 69 |
27
|
adantr |
|
| 70 |
|
efadd |
|
| 71 |
59 69 70
|
syl2anc |
|
| 72 |
26
|
adantr |
|
| 73 |
55 58 72
|
adddid |
|
| 74 |
25
|
adantr |
|
| 75 |
56 74 57
|
adddird |
|
| 76 |
22
|
ad2antrr |
|
| 77 |
56 76
|
negsubd |
|
| 78 |
77
|
oveq1d |
|
| 79 |
75 78
|
eqtr3d |
|
| 80 |
79
|
oveq2d |
|
| 81 |
73 80
|
eqtr3d |
|
| 82 |
81
|
fveq2d |
|
| 83 |
71 82
|
eqtr3d |
|
| 84 |
83
|
oveq2d |
|
| 85 |
84
|
adantr |
|
| 86 |
68 85
|
eqtrd |
|
| 87 |
86
|
sumeq2dv |
|
| 88 |
66 87
|
eqtrd |
|
| 89 |
88
|
sumeq2dv |
|
| 90 |
14 64 89
|
3eqtrd |
|
| 91 |
90
|
itgeq2dv |
|
| 92 |
|
ioombl |
|
| 93 |
92
|
a1i |
|
| 94 |
|
fzfid |
|
| 95 |
|
sumex |
|
| 96 |
95
|
a1i |
|
| 97 |
93
|
adantr |
|
| 98 |
29
|
a1i |
|
| 99 |
10
|
adantr |
|
| 100 |
|
fzfid |
|
| 101 |
98 32 99 100
|
reprfi |
|
| 102 |
37
|
a1i |
|
| 103 |
52
|
adantllr |
|
| 104 |
102 103
|
fprodcl |
|
| 105 |
56 76
|
subcld |
|
| 106 |
105 57
|
mulcld |
|
| 107 |
55 106
|
mulcld |
|
| 108 |
107
|
an32s |
|
| 109 |
108
|
adantr |
|
| 110 |
109
|
efcld |
|
| 111 |
104 110
|
mulcld |
|
| 112 |
111
|
anasss |
|
| 113 |
37
|
a1i |
|
| 114 |
113 52
|
fprodcl |
|
| 115 |
|
fvex |
|
| 116 |
115
|
a1i |
|
| 117 |
|
ioossicc |
|
| 118 |
117
|
a1i |
|
| 119 |
92
|
a1i |
|
| 120 |
115
|
a1i |
|
| 121 |
|
0red |
|
| 122 |
|
1red |
|
| 123 |
22
|
adantr |
|
| 124 |
41 123
|
subcld |
|
| 125 |
|
unitsscn |
|
| 126 |
125
|
a1i |
|
| 127 |
|
ssidd |
|
| 128 |
|
cncfmptc |
|
| 129 |
124 126 127 128
|
syl3anc |
|
| 130 |
|
cncfmptid |
|
| 131 |
126 127 130
|
syl2anc |
|
| 132 |
129 131
|
mulcncf |
|
| 133 |
132
|
efmul2picn |
|
| 134 |
|
cniccibl |
|
| 135 |
121 122 133 134
|
syl3anc |
|
| 136 |
118 119 120 135
|
iblss |
|
| 137 |
136
|
adantr |
|
| 138 |
114 116 137
|
iblmulc2 |
|
| 139 |
97 101 112 138
|
itgfsum |
|
| 140 |
139
|
simpld |
|
| 141 |
93 94 96 140
|
itgfsum |
|
| 142 |
141
|
simprd |
|
| 143 |
|
oveq2 |
|
| 144 |
|
oveq2 |
|
| 145 |
101 114
|
fsumcl |
|
| 146 |
145
|
mulridd |
|
| 147 |
145
|
mul01d |
|
| 148 |
143 144 146 147
|
ifeq3da |
|
| 149 |
|
velsn |
|
| 150 |
41 123
|
subeq0ad |
|
| 151 |
149 150
|
bitr4id |
|
| 152 |
151
|
ifbid |
|
| 153 |
1
|
nn0zd |
|
| 154 |
153
|
ad2antrr |
|
| 155 |
46 154
|
zsubcld |
|
| 156 |
|
itgexpif |
|
| 157 |
155 156
|
syl |
|
| 158 |
157
|
oveq2d |
|
| 159 |
158
|
sumeq2dv |
|
| 160 |
|
1cnd |
|
| 161 |
|
0cnd |
|
| 162 |
160 161
|
ifcld |
|
| 163 |
101 162 114
|
fsummulc1 |
|
| 164 |
159 163
|
eqtr4d |
|
| 165 |
148 152 164
|
3eqtr4rd |
|
| 166 |
165
|
sumeq2dv |
|
| 167 |
|
0zd |
|
| 168 |
10
|
nn0zd |
|
| 169 |
168 153
|
zmulcld |
|
| 170 |
1
|
nn0ge0d |
|
| 171 |
|
nnmulge |
|
| 172 |
2 1 171
|
syl2anc |
|
| 173 |
167 169 153 170 172
|
elfzd |
|
| 174 |
173
|
snssd |
|
| 175 |
174
|
sselda |
|
| 176 |
175 145
|
syldan |
|
| 177 |
176
|
ralrimiva |
|
| 178 |
94
|
olcd |
|
| 179 |
|
sumss2 |
|
| 180 |
174 177 178 179
|
syl21anc |
|
| 181 |
29
|
a1i |
|
| 182 |
|
fzfid |
|
| 183 |
181 153 10 182
|
reprfi |
|
| 184 |
37
|
a1i |
|
| 185 |
1
|
ad2antrr |
|
| 186 |
10
|
ad2antrr |
|
| 187 |
22
|
ad2antrr |
|
| 188 |
3
|
ad2antrr |
|
| 189 |
|
simpr |
|
| 190 |
29
|
a1i |
|
| 191 |
153
|
adantr |
|
| 192 |
10
|
adantr |
|
| 193 |
|
simpr |
|
| 194 |
190 191 192 193
|
reprf |
|
| 195 |
194
|
ffvelcdmda |
|
| 196 |
29 195
|
sselid |
|
| 197 |
185 186 187 188 189 196
|
breprexplemb |
|
| 198 |
184 197
|
fprodcl |
|
| 199 |
183 198
|
fsumcl |
|
| 200 |
|
oveq2 |
|
| 201 |
200
|
sumeq1d |
|
| 202 |
201
|
sumsn |
|
| 203 |
1 199 202
|
syl2anc |
|
| 204 |
166 180 203
|
3eqtr2d |
|
| 205 |
139
|
simprd |
|
| 206 |
110
|
an32s |
|
| 207 |
114 206 137
|
itgmulc2 |
|
| 208 |
207
|
sumeq2dv |
|
| 209 |
205 208
|
eqtr4d |
|
| 210 |
209
|
sumeq2dv |
|
| 211 |
1 10
|
reprfz1 |
|
| 212 |
211
|
sumeq1d |
|
| 213 |
204 210 212
|
3eqtr4d |
|
| 214 |
91 142 213
|
3eqtrrd |
|