Metamath Proof Explorer


Theorem cmpsublem

Description: Lemma for cmpsub . (Contributed by Jeff Hankins, 28-Jun-2009)

Ref Expression
Hypothesis cmpsub.1 X=J
Assertion cmpsublem JTopSXc𝒫JScd𝒫cFinSds𝒫J𝑡SJ𝑡S=st𝒫sFinJ𝑡S=t

Proof

Step Hyp Ref Expression
1 cmpsub.1 X=J
2 rabexg JTopyJ|ySsV
3 2 ad2antrr JTopSXs𝒫J𝑡SyJ|ySsV
4 ssrab2 yJ|ySsJ
5 elpwg yJ|ySsVyJ|ySs𝒫JyJ|ySsJ
6 4 5 mpbiri yJ|ySsVyJ|ySs𝒫J
7 3 6 syl JTopSXs𝒫J𝑡SyJ|ySs𝒫J
8 unieq c=yJ|ySsc=yJ|ySs
9 8 sseq2d c=yJ|ySsScSyJ|ySs
10 pweq c=yJ|ySs𝒫c=𝒫yJ|ySs
11 10 ineq1d c=yJ|ySs𝒫cFin=𝒫yJ|ySsFin
12 11 rexeqdv c=yJ|ySsd𝒫cFinSdd𝒫yJ|ySsFinSd
13 9 12 imbi12d c=yJ|ySsScd𝒫cFinSdSyJ|ySsd𝒫yJ|ySsFinSd
14 13 rspcva yJ|ySs𝒫Jc𝒫JScd𝒫cFinSdSyJ|ySsd𝒫yJ|ySsFinSd
15 7 14 sylan JTopSXs𝒫J𝑡Sc𝒫JScd𝒫cFinSdSyJ|ySsd𝒫yJ|ySsFinSd
16 15 ex JTopSXs𝒫J𝑡Sc𝒫JScd𝒫cFinSdSyJ|ySsd𝒫yJ|ySsFinSd
17 1 restuni JTopSXS=J𝑡S
18 17 adantr JTopSXs𝒫J𝑡SS=J𝑡S
19 18 eqeq1d JTopSXs𝒫J𝑡SS=sJ𝑡S=s
20 velpw s𝒫J𝑡SsJ𝑡S
21 eleq2 S=stSts
22 eluni tsutuus
23 21 22 bitrdi S=stSutuus
24 23 adantl JTopSXsJ𝑡SS=stSutuus
25 ssel sJ𝑡SusuJ𝑡S
26 1 sseq2i SXSJ
27 uniexg JTopJV
28 ssexg SJJVSV
29 28 ancoms JVSJSV
30 27 29 sylan JTopSJSV
31 26 30 sylan2b JTopSXSV
32 elrest JTopSVuJ𝑡SwJu=wS
33 31 32 syldan JTopSXuJ𝑡SwJu=wS
34 inss1 wSw
35 sseq1 u=wSuwwSw
36 34 35 mpbiri u=wSuw
37 36 sselda u=wStutw
38 37 3ad2antl3 JTopSXwJu=wStutw
39 38 3adant2 JTopSXwJu=wSustutw
40 ineq1 y=wyS=wS
41 40 eleq1d y=wySswSs
42 simp12 JTopSXwJu=wSustuwJ
43 eleq1 u=wSuswSs
44 43 biimpa u=wSuswSs
45 44 3ad2antl3 JTopSXwJu=wSuswSs
46 45 3adant3 JTopSXwJu=wSustuwSs
47 41 42 46 elrabd JTopSXwJu=wSustuwyJ|ySs
48 vex wV
49 eleq2 v=wtvtw
50 eleq1 v=wvyJ|ySswyJ|ySs
51 49 50 anbi12d v=wtvvyJ|ySstwwyJ|ySs
52 48 51 spcev twwyJ|ySsvtvvyJ|ySs
53 39 47 52 syl2anc JTopSXwJu=wSustuvtvvyJ|ySs
54 53 3exp JTopSXwJu=wSustuvtvvyJ|ySs
55 54 rexlimdv3a JTopSXwJu=wSustuvtvvyJ|ySs
56 33 55 sylbid JTopSXuJ𝑡SustuvtvvyJ|ySs
57 56 com23 JTopSXusuJ𝑡StuvtvvyJ|ySs
58 57 com4l usuJ𝑡StuJTopSXvtvvyJ|ySs
59 25 58 sylcom sJ𝑡SustuJTopSXvtvvyJ|ySs
60 59 com24 sJ𝑡SJTopSXtuusvtvvyJ|ySs
61 60 impcom JTopSXsJ𝑡StuusvtvvyJ|ySs
62 61 impd JTopSXsJ𝑡StuusvtvvyJ|ySs
63 62 exlimdv JTopSXsJ𝑡SutuusvtvvyJ|ySs
64 63 adantr JTopSXsJ𝑡SS=sutuusvtvvyJ|ySs
65 24 64 sylbid JTopSXsJ𝑡SS=stSvtvvyJ|ySs
66 65 ex JTopSXsJ𝑡SS=stSvtvvyJ|ySs
67 20 66 sylan2b JTopSXs𝒫J𝑡SS=stSvtvvyJ|ySs
68 67 imp JTopSXs𝒫J𝑡SS=stSvtvvyJ|ySs
69 eluni tyJ|ySsvtvvyJ|ySs
70 68 69 syl6ibr JTopSXs𝒫J𝑡SS=stStyJ|ySs
71 70 ssrdv JTopSXs𝒫J𝑡SS=sSyJ|ySs
72 pm2.27 SyJ|ySsSyJ|ySsd𝒫yJ|ySsFinSdd𝒫yJ|ySsFinSd
73 elin d𝒫yJ|ySsFind𝒫yJ|ySsdFin
74 vex tV
75 eqeq1 x=tx=zSt=zS
76 75 rexbidv x=tzdx=zSzdt=zS
77 74 76 elab tx|zdx=zSzdt=zS
78 velpw d𝒫yJ|ySsdyJ|ySs
79 ssel dyJ|ySszdzyJ|ySs
80 ineq1 y=zyS=zS
81 80 eleq1d y=zySszSs
82 81 elrab zyJ|ySszJzSs
83 eleq1a zSst=zSts
84 82 83 simplbiim zyJ|ySst=zSts
85 79 84 syl6 dyJ|ySszdt=zSts
86 85 2a1d dyJ|ySsSdJTopSXs𝒫J𝑡SS=szdt=zSts
87 86 adantr dyJ|ySsdFinSdJTopSXs𝒫J𝑡SS=szdt=zSts
88 78 87 sylanb d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=szdt=zSts
89 88 3imp d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=szdt=zSts
90 89 rexlimdv d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=szdt=zSts
91 77 90 biimtrid d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=stx|zdx=zSts
92 91 ssrdv d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sx|zdx=zSs
93 vex dV
94 93 abrexex x|zdx=zSV
95 94 elpw x|zdx=zS𝒫sx|zdx=zSs
96 92 95 sylibr d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sx|zdx=zS𝒫s
97 abrexfi dFinx|zdx=zSFin
98 97 ad2antlr d𝒫yJ|ySsdFinSdx|zdx=zSFin
99 98 3adant3 d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sx|zdx=zSFin
100 96 99 elind d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sx|zdx=zS𝒫sFin
101 dfss SdS=Sd
102 101 biimpi SdS=Sd
103 uniiun d=zdz
104 103 ineq2i Sd=Szdz
105 iunin2 zdSz=Szdz
106 incom Sz=zS
107 106 a1i zdSz=zS
108 107 iuneq2i zdSz=zdzS
109 104 105 108 3eqtr2i Sd=zdzS
110 102 109 eqtrdi SdS=zdzS
111 110 3ad2ant2 d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sS=zdzS
112 18 ad2antrl SdJTopSXs𝒫J𝑡SS=sS=J𝑡S
113 112 3adant1 d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sS=J𝑡S
114 vex zV
115 114 inex1 zSV
116 115 dfiun2 zdzS=x|zdx=zS
117 116 a1i d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=szdzS=x|zdx=zS
118 111 113 117 3eqtr3d d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=sJ𝑡S=x|zdx=zS
119 unieq t=x|zdx=zSt=x|zdx=zS
120 119 rspceeqv x|zdx=zS𝒫sFinJ𝑡S=x|zdx=zSt𝒫sFinJ𝑡S=t
121 100 118 120 syl2anc d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=st𝒫sFinJ𝑡S=t
122 121 3exp d𝒫yJ|ySsdFinSdJTopSXs𝒫J𝑡SS=st𝒫sFinJ𝑡S=t
123 73 122 sylbi d𝒫yJ|ySsFinSdJTopSXs𝒫J𝑡SS=st𝒫sFinJ𝑡S=t
124 123 rexlimiv d𝒫yJ|ySsFinSdJTopSXs𝒫J𝑡SS=st𝒫sFinJ𝑡S=t
125 72 124 syl6 SyJ|ySsSyJ|ySsd𝒫yJ|ySsFinSdJTopSXs𝒫J𝑡SS=st𝒫sFinJ𝑡S=t
126 125 com3r JTopSXs𝒫J𝑡SS=sSyJ|ySsSyJ|ySsd𝒫yJ|ySsFinSdt𝒫sFinJ𝑡S=t
127 71 126 mpd JTopSXs𝒫J𝑡SS=sSyJ|ySsd𝒫yJ|ySsFinSdt𝒫sFinJ𝑡S=t
128 127 ex JTopSXs𝒫J𝑡SS=sSyJ|ySsd𝒫yJ|ySsFinSdt𝒫sFinJ𝑡S=t
129 19 128 sylbird JTopSXs𝒫J𝑡SJ𝑡S=sSyJ|ySsd𝒫yJ|ySsFinSdt𝒫sFinJ𝑡S=t
130 129 com23 JTopSXs𝒫J𝑡SSyJ|ySsd𝒫yJ|ySsFinSdJ𝑡S=st𝒫sFinJ𝑡S=t
131 16 130 syld JTopSXs𝒫J𝑡Sc𝒫JScd𝒫cFinSdJ𝑡S=st𝒫sFinJ𝑡S=t
132 131 ralrimdva JTopSXc𝒫JScd𝒫cFinSds𝒫J𝑡SJ𝑡S=st𝒫sFinJ𝑡S=t