Metamath Proof Explorer


Theorem coeeulem

Description: Lemma for coeeu . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses coeeu.1 φFPolyS
coeeu.2 φA0
coeeu.3 φB0
coeeu.4 φM0
coeeu.5 φN0
coeeu.6 φAM+1=0
coeeu.7 φBN+1=0
coeeu.8 φF=zk=0MAkzk
coeeu.9 φF=zk=0NBkzk
Assertion coeeulem φA=B

Proof

Step Hyp Ref Expression
1 coeeu.1 φFPolyS
2 coeeu.2 φA0
3 coeeu.3 φB0
4 coeeu.4 φM0
5 coeeu.5 φN0
6 coeeu.6 φAM+1=0
7 coeeu.7 φBN+1=0
8 coeeu.8 φF=zk=0MAkzk
9 coeeu.9 φF=zk=0NBkzk
10 ssidd φ
11 4 5 nn0addcld φM+N0
12 subcl xyxy
13 12 adantl φxyxy
14 cnex V
15 nn0ex 0V
16 14 15 elmap A0A:0
17 2 16 sylib φA:0
18 14 15 elmap B0B:0
19 3 18 sylib φB:0
20 15 a1i φ0V
21 inidm 00=0
22 13 17 19 20 20 21 off φAfB:0
23 14 15 elmap AfB0AfB:0
24 22 23 sylibr φAfB0
25 0cn 0
26 snssi 00
27 25 26 ax-mp 0
28 ssequn2 00=
29 27 28 mpbi 0=
30 29 oveq1i 00=0
31 24 30 eleqtrrdi φAfB00
32 11 nn0red φM+N
33 nn0re k0k
34 ltnle M+NkM+N<k¬kM+N
35 32 33 34 syl2an φk0M+N<k¬kM+N
36 17 ffnd φAFn0
37 19 ffnd φBFn0
38 eqidd φk0Ak=Ak
39 eqidd φk0Bk=Bk
40 36 37 20 20 21 38 39 ofval φk0AfBk=AkBk
41 40 adantrr φk0M+N<kAfBk=AkBk
42 4 nn0red φM
43 42 adantr φk0M+N<kM
44 32 adantr φk0M+N<kM+N
45 33 adantl φk0k
46 45 adantrr φk0M+N<kk
47 4 nn0cnd φM
48 5 nn0cnd φN
49 47 48 addcomd φM+N=N+M
50 nn0uz 0=0
51 5 50 eleqtrdi φN0
52 4 nn0zd φM
53 eluzadd N0MN+M0+M
54 51 52 53 syl2anc φN+M0+M
55 49 54 eqeltrd φM+N0+M
56 47 addlidd φ0+M=M
57 56 fveq2d φ0+M=M
58 55 57 eleqtrd φM+NM
59 eluzle M+NMMM+N
60 58 59 syl φMM+N
61 60 adantr φk0M+N<kMM+N
62 simprr φk0M+N<kM+N<k
63 43 44 46 61 62 lelttrd φk0M+N<kM<k
64 43 46 ltnled φk0M+N<kM<k¬kM
65 63 64 mpbid φk0M+N<k¬kM
66 plyco0 M0A:0AM+1=0k0Ak0kM
67 4 17 66 syl2anc φAM+1=0k0Ak0kM
68 6 67 mpbid φk0Ak0kM
69 68 r19.21bi φk0Ak0kM
70 69 adantrr φk0M+N<kAk0kM
71 70 necon1bd φk0M+N<k¬kMAk=0
72 65 71 mpd φk0M+N<kAk=0
73 5 nn0red φN
74 73 adantr φk0M+N<kN
75 4 50 eleqtrdi φM0
76 5 nn0zd φN
77 eluzadd M0NM+N0+N
78 75 76 77 syl2anc φM+N0+N
79 48 addlidd φ0+N=N
80 79 fveq2d φ0+N=N
81 78 80 eleqtrd φM+NN
82 eluzle M+NNNM+N
83 81 82 syl φNM+N
84 83 adantr φk0M+N<kNM+N
85 74 44 46 84 62 lelttrd φk0M+N<kN<k
86 74 46 ltnled φk0M+N<kN<k¬kN
87 85 86 mpbid φk0M+N<k¬kN
88 plyco0 N0B:0BN+1=0k0Bk0kN
89 5 19 88 syl2anc φBN+1=0k0Bk0kN
90 7 89 mpbid φk0Bk0kN
91 90 r19.21bi φk0Bk0kN
92 91 adantrr φk0M+N<kBk0kN
93 92 necon1bd φk0M+N<k¬kNBk=0
94 87 93 mpd φk0M+N<kBk=0
95 72 94 oveq12d φk0M+N<kAkBk=00
96 0m0e0 00=0
97 95 96 eqtrdi φk0M+N<kAkBk=0
98 41 97 eqtrd φk0M+N<kAfBk=0
99 98 expr φk0M+N<kAfBk=0
100 35 99 sylbird φk0¬kM+NAfBk=0
101 100 necon1ad φk0AfBk0kM+N
102 101 ralrimiva φk0AfBk0kM+N
103 plyco0 M+N0AfB:0AfBM+N+1=0k0AfBk0kM+N
104 11 22 103 syl2anc φAfBM+N+1=0k0AfBk0kM+N
105 102 104 mpbird φAfBM+N+1=0
106 df-0p 0𝑝=×0
107 fconstmpt ×0=z0
108 106 107 eqtri 0𝑝=z0
109 elfznn0 k0M+Nk0
110 40 adantlr φzk0AfBk=AkBk
111 110 oveq1d φzk0AfBkzk=AkBkzk
112 17 adantr φzA:0
113 112 ffvelcdmda φzk0Ak
114 19 adantr φzB:0
115 114 ffvelcdmda φzk0Bk
116 expcl zk0zk
117 116 adantll φzk0zk
118 113 115 117 subdird φzk0AkBkzk=AkzkBkzk
119 111 118 eqtrd φzk0AfBkzk=AkzkBkzk
120 109 119 sylan2 φzk0M+NAfBkzk=AkzkBkzk
121 120 sumeq2dv φzk=0M+NAfBkzk=k=0M+NAkzkBkzk
122 fzfid φz0M+NFin
123 113 117 mulcld φzk0Akzk
124 109 123 sylan2 φzk0M+NAkzk
125 115 117 mulcld φzk0Bkzk
126 109 125 sylan2 φzk0M+NBkzk
127 122 124 126 fsumsub φzk=0M+NAkzkBkzk=k=0M+NAkzkk=0M+NBkzk
128 122 124 fsumcl φzk=0M+NAkzk
129 8 9 eqtr3d φzk=0MAkzk=zk=0NBkzk
130 129 fveq1d φzk=0MAkzkz=zk=0NBkzkz
131 130 adantr φzzk=0MAkzkz=zk=0NBkzkz
132 simpr φzz
133 sumex k=0MAkzkV
134 eqid zk=0MAkzk=zk=0MAkzk
135 134 fvmpt2 zk=0MAkzkVzk=0MAkzkz=k=0MAkzk
136 132 133 135 sylancl φzzk=0MAkzkz=k=0MAkzk
137 fzss2 M+NM0M0M+N
138 58 137 syl φ0M0M+N
139 138 adantr φz0M0M+N
140 139 sselda φzk0Mk0M+N
141 140 124 syldan φzk0MAkzk
142 eldifn k0M+N0M¬k0M
143 142 adantl φzk0M+N0M¬k0M
144 eldifi k0M+N0Mk0M+N
145 144 109 syl k0M+N0Mk0
146 simpr φk0k0
147 146 50 eleqtrdi φk0k0
148 52 adantr φk0M
149 elfz5 k0Mk0MkM
150 147 148 149 syl2anc φk0k0MkM
151 69 150 sylibrd φk0Ak0k0M
152 151 adantlr φzk0Ak0k0M
153 152 necon1bd φzk0¬k0MAk=0
154 145 153 sylan2 φzk0M+N0M¬k0MAk=0
155 143 154 mpd φzk0M+N0MAk=0
156 155 oveq1d φzk0M+N0MAkzk=0zk
157 132 145 116 syl2an φzk0M+N0Mzk
158 157 mul02d φzk0M+N0M0zk=0
159 156 158 eqtrd φzk0M+N0MAkzk=0
160 139 141 159 122 fsumss φzk=0MAkzk=k=0M+NAkzk
161 136 160 eqtrd φzzk=0MAkzkz=k=0M+NAkzk
162 sumex k=0NBkzkV
163 eqid zk=0NBkzk=zk=0NBkzk
164 163 fvmpt2 zk=0NBkzkVzk=0NBkzkz=k=0NBkzk
165 132 162 164 sylancl φzzk=0NBkzkz=k=0NBkzk
166 fzss2 M+NN0N0M+N
167 81 166 syl φ0N0M+N
168 167 adantr φz0N0M+N
169 168 sselda φzk0Nk0M+N
170 169 126 syldan φzk0NBkzk
171 eldifn k0M+N0N¬k0N
172 171 adantl φzk0M+N0N¬k0N
173 eldifi k0M+N0Nk0M+N
174 173 109 syl k0M+N0Nk0
175 76 adantr φk0N
176 elfz5 k0Nk0NkN
177 147 175 176 syl2anc φk0k0NkN
178 91 177 sylibrd φk0Bk0k0N
179 178 adantlr φzk0Bk0k0N
180 179 necon1bd φzk0¬k0NBk=0
181 174 180 sylan2 φzk0M+N0N¬k0NBk=0
182 172 181 mpd φzk0M+N0NBk=0
183 182 oveq1d φzk0M+N0NBkzk=0zk
184 132 174 116 syl2an φzk0M+N0Nzk
185 184 mul02d φzk0M+N0N0zk=0
186 183 185 eqtrd φzk0M+N0NBkzk=0
187 168 170 186 122 fsumss φzk=0NBkzk=k=0M+NBkzk
188 165 187 eqtrd φzzk=0NBkzkz=k=0M+NBkzk
189 131 161 188 3eqtr3d φzk=0M+NAkzk=k=0M+NBkzk
190 128 189 subeq0bd φzk=0M+NAkzkk=0M+NBkzk=0
191 121 127 190 3eqtrrd φz0=k=0M+NAfBkzk
192 191 mpteq2dva φz0=zk=0M+NAfBkzk
193 108 192 eqtrid φ0𝑝=zk=0M+NAfBkzk
194 10 11 31 105 193 plyeq0 φAfB=0×0
195 ofsubeq0 0VA:0B:0AfB=0×0A=B
196 15 17 19 195 mp3an2i φAfB=0×0A=B
197 194 196 mpbid φA=B