Metamath Proof Explorer


Theorem coeeulem

Description: Lemma for coeeu . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses coeeu.1 φ F Poly S
coeeu.2 φ A 0
coeeu.3 φ B 0
coeeu.4 φ M 0
coeeu.5 φ N 0
coeeu.6 φ A M + 1 = 0
coeeu.7 φ B N + 1 = 0
coeeu.8 φ F = z k = 0 M A k z k
coeeu.9 φ F = z k = 0 N B k z k
Assertion coeeulem φ A = B

Proof

Step Hyp Ref Expression
1 coeeu.1 φ F Poly S
2 coeeu.2 φ A 0
3 coeeu.3 φ B 0
4 coeeu.4 φ M 0
5 coeeu.5 φ N 0
6 coeeu.6 φ A M + 1 = 0
7 coeeu.7 φ B N + 1 = 0
8 coeeu.8 φ F = z k = 0 M A k z k
9 coeeu.9 φ F = z k = 0 N B k z k
10 ssidd φ
11 4 5 nn0addcld φ M + N 0
12 subcl x y x y
13 12 adantl φ x y x y
14 cnex V
15 nn0ex 0 V
16 14 15 elmap A 0 A : 0
17 2 16 sylib φ A : 0
18 14 15 elmap B 0 B : 0
19 3 18 sylib φ B : 0
20 15 a1i φ 0 V
21 inidm 0 0 = 0
22 13 17 19 20 20 21 off φ A f B : 0
23 14 15 elmap A f B 0 A f B : 0
24 22 23 sylibr φ A f B 0
25 0cn 0
26 snssi 0 0
27 25 26 ax-mp 0
28 ssequn2 0 0 =
29 27 28 mpbi 0 =
30 29 oveq1i 0 0 = 0
31 24 30 eleqtrrdi φ A f B 0 0
32 11 nn0red φ M + N
33 nn0re k 0 k
34 ltnle M + N k M + N < k ¬ k M + N
35 32 33 34 syl2an φ k 0 M + N < k ¬ k M + N
36 17 ffnd φ A Fn 0
37 19 ffnd φ B Fn 0
38 eqidd φ k 0 A k = A k
39 eqidd φ k 0 B k = B k
40 36 37 20 20 21 38 39 ofval φ k 0 A f B k = A k B k
41 40 adantrr φ k 0 M + N < k A f B k = A k B k
42 4 nn0red φ M
43 42 adantr φ k 0 M + N < k M
44 32 adantr φ k 0 M + N < k M + N
45 33 adantl φ k 0 k
46 45 adantrr φ k 0 M + N < k k
47 4 nn0cnd φ M
48 5 nn0cnd φ N
49 47 48 addcomd φ M + N = N + M
50 nn0uz 0 = 0
51 5 50 eleqtrdi φ N 0
52 4 nn0zd φ M
53 eluzadd N 0 M N + M 0 + M
54 51 52 53 syl2anc φ N + M 0 + M
55 49 54 eqeltrd φ M + N 0 + M
56 47 addid2d φ 0 + M = M
57 56 fveq2d φ 0 + M = M
58 55 57 eleqtrd φ M + N M
59 eluzle M + N M M M + N
60 58 59 syl φ M M + N
61 60 adantr φ k 0 M + N < k M M + N
62 simprr φ k 0 M + N < k M + N < k
63 43 44 46 61 62 lelttrd φ k 0 M + N < k M < k
64 43 46 ltnled φ k 0 M + N < k M < k ¬ k M
65 63 64 mpbid φ k 0 M + N < k ¬ k M
66 plyco0 M 0 A : 0 A M + 1 = 0 k 0 A k 0 k M
67 4 17 66 syl2anc φ A M + 1 = 0 k 0 A k 0 k M
68 6 67 mpbid φ k 0 A k 0 k M
69 68 r19.21bi φ k 0 A k 0 k M
70 69 adantrr φ k 0 M + N < k A k 0 k M
71 70 necon1bd φ k 0 M + N < k ¬ k M A k = 0
72 65 71 mpd φ k 0 M + N < k A k = 0
73 5 nn0red φ N
74 73 adantr φ k 0 M + N < k N
75 4 50 eleqtrdi φ M 0
76 5 nn0zd φ N
77 eluzadd M 0 N M + N 0 + N
78 75 76 77 syl2anc φ M + N 0 + N
79 48 addid2d φ 0 + N = N
80 79 fveq2d φ 0 + N = N
81 78 80 eleqtrd φ M + N N
82 eluzle M + N N N M + N
83 81 82 syl φ N M + N
84 83 adantr φ k 0 M + N < k N M + N
85 74 44 46 84 62 lelttrd φ k 0 M + N < k N < k
86 74 46 ltnled φ k 0 M + N < k N < k ¬ k N
87 85 86 mpbid φ k 0 M + N < k ¬ k N
88 plyco0 N 0 B : 0 B N + 1 = 0 k 0 B k 0 k N
89 5 19 88 syl2anc φ B N + 1 = 0 k 0 B k 0 k N
90 7 89 mpbid φ k 0 B k 0 k N
91 90 r19.21bi φ k 0 B k 0 k N
92 91 adantrr φ k 0 M + N < k B k 0 k N
93 92 necon1bd φ k 0 M + N < k ¬ k N B k = 0
94 87 93 mpd φ k 0 M + N < k B k = 0
95 72 94 oveq12d φ k 0 M + N < k A k B k = 0 0
96 0m0e0 0 0 = 0
97 95 96 eqtrdi φ k 0 M + N < k A k B k = 0
98 41 97 eqtrd φ k 0 M + N < k A f B k = 0
99 98 expr φ k 0 M + N < k A f B k = 0
100 35 99 sylbird φ k 0 ¬ k M + N A f B k = 0
101 100 necon1ad φ k 0 A f B k 0 k M + N
102 101 ralrimiva φ k 0 A f B k 0 k M + N
103 plyco0 M + N 0 A f B : 0 A f B M + N + 1 = 0 k 0 A f B k 0 k M + N
104 11 22 103 syl2anc φ A f B M + N + 1 = 0 k 0 A f B k 0 k M + N
105 102 104 mpbird φ A f B M + N + 1 = 0
106 df-0p 0 𝑝 = × 0
107 fconstmpt × 0 = z 0
108 106 107 eqtri 0 𝑝 = z 0
109 elfznn0 k 0 M + N k 0
110 40 adantlr φ z k 0 A f B k = A k B k
111 110 oveq1d φ z k 0 A f B k z k = A k B k z k
112 17 adantr φ z A : 0
113 112 ffvelrnda φ z k 0 A k
114 19 adantr φ z B : 0
115 114 ffvelrnda φ z k 0 B k
116 expcl z k 0 z k
117 116 adantll φ z k 0 z k
118 113 115 117 subdird φ z k 0 A k B k z k = A k z k B k z k
119 111 118 eqtrd φ z k 0 A f B k z k = A k z k B k z k
120 109 119 sylan2 φ z k 0 M + N A f B k z k = A k z k B k z k
121 120 sumeq2dv φ z k = 0 M + N A f B k z k = k = 0 M + N A k z k B k z k
122 fzfid φ z 0 M + N Fin
123 113 117 mulcld φ z k 0 A k z k
124 109 123 sylan2 φ z k 0 M + N A k z k
125 115 117 mulcld φ z k 0 B k z k
126 109 125 sylan2 φ z k 0 M + N B k z k
127 122 124 126 fsumsub φ z k = 0 M + N A k z k B k z k = k = 0 M + N A k z k k = 0 M + N B k z k
128 122 124 fsumcl φ z k = 0 M + N A k z k
129 8 9 eqtr3d φ z k = 0 M A k z k = z k = 0 N B k z k
130 129 fveq1d φ z k = 0 M A k z k z = z k = 0 N B k z k z
131 130 adantr φ z z k = 0 M A k z k z = z k = 0 N B k z k z
132 simpr φ z z
133 sumex k = 0 M A k z k V
134 eqid z k = 0 M A k z k = z k = 0 M A k z k
135 134 fvmpt2 z k = 0 M A k z k V z k = 0 M A k z k z = k = 0 M A k z k
136 132 133 135 sylancl φ z z k = 0 M A k z k z = k = 0 M A k z k
137 fzss2 M + N M 0 M 0 M + N
138 58 137 syl φ 0 M 0 M + N
139 138 adantr φ z 0 M 0 M + N
140 139 sselda φ z k 0 M k 0 M + N
141 140 124 syldan φ z k 0 M A k z k
142 eldifn k 0 M + N 0 M ¬ k 0 M
143 142 adantl φ z k 0 M + N 0 M ¬ k 0 M
144 eldifi k 0 M + N 0 M k 0 M + N
145 144 109 syl k 0 M + N 0 M k 0
146 simpr φ k 0 k 0
147 146 50 eleqtrdi φ k 0 k 0
148 52 adantr φ k 0 M
149 elfz5 k 0 M k 0 M k M
150 147 148 149 syl2anc φ k 0 k 0 M k M
151 69 150 sylibrd φ k 0 A k 0 k 0 M
152 151 adantlr φ z k 0 A k 0 k 0 M
153 152 necon1bd φ z k 0 ¬ k 0 M A k = 0
154 145 153 sylan2 φ z k 0 M + N 0 M ¬ k 0 M A k = 0
155 143 154 mpd φ z k 0 M + N 0 M A k = 0
156 155 oveq1d φ z k 0 M + N 0 M A k z k = 0 z k
157 132 145 116 syl2an φ z k 0 M + N 0 M z k
158 157 mul02d φ z k 0 M + N 0 M 0 z k = 0
159 156 158 eqtrd φ z k 0 M + N 0 M A k z k = 0
160 139 141 159 122 fsumss φ z k = 0 M A k z k = k = 0 M + N A k z k
161 136 160 eqtrd φ z z k = 0 M A k z k z = k = 0 M + N A k z k
162 sumex k = 0 N B k z k V
163 eqid z k = 0 N B k z k = z k = 0 N B k z k
164 163 fvmpt2 z k = 0 N B k z k V z k = 0 N B k z k z = k = 0 N B k z k
165 132 162 164 sylancl φ z z k = 0 N B k z k z = k = 0 N B k z k
166 fzss2 M + N N 0 N 0 M + N
167 81 166 syl φ 0 N 0 M + N
168 167 adantr φ z 0 N 0 M + N
169 168 sselda φ z k 0 N k 0 M + N
170 169 126 syldan φ z k 0 N B k z k
171 eldifn k 0 M + N 0 N ¬ k 0 N
172 171 adantl φ z k 0 M + N 0 N ¬ k 0 N
173 eldifi k 0 M + N 0 N k 0 M + N
174 173 109 syl k 0 M + N 0 N k 0
175 76 adantr φ k 0 N
176 elfz5 k 0 N k 0 N k N
177 147 175 176 syl2anc φ k 0 k 0 N k N
178 91 177 sylibrd φ k 0 B k 0 k 0 N
179 178 adantlr φ z k 0 B k 0 k 0 N
180 179 necon1bd φ z k 0 ¬ k 0 N B k = 0
181 174 180 sylan2 φ z k 0 M + N 0 N ¬ k 0 N B k = 0
182 172 181 mpd φ z k 0 M + N 0 N B k = 0
183 182 oveq1d φ z k 0 M + N 0 N B k z k = 0 z k
184 132 174 116 syl2an φ z k 0 M + N 0 N z k
185 184 mul02d φ z k 0 M + N 0 N 0 z k = 0
186 183 185 eqtrd φ z k 0 M + N 0 N B k z k = 0
187 168 170 186 122 fsumss φ z k = 0 N B k z k = k = 0 M + N B k z k
188 165 187 eqtrd φ z z k = 0 N B k z k z = k = 0 M + N B k z k
189 131 161 188 3eqtr3d φ z k = 0 M + N A k z k = k = 0 M + N B k z k
190 128 189 subeq0bd φ z k = 0 M + N A k z k k = 0 M + N B k z k = 0
191 121 127 190 3eqtrrd φ z 0 = k = 0 M + N A f B k z k
192 191 mpteq2dva φ z 0 = z k = 0 M + N A f B k z k
193 108 192 eqtrid φ 0 𝑝 = z k = 0 M + N A f B k z k
194 10 11 31 105 193 plyeq0 φ A f B = 0 × 0
195 ofsubeq0 0 V A : 0 B : 0 A f B = 0 × 0 A = B
196 15 17 19 195 mp3an2i φ A f B = 0 × 0 A = B
197 194 196 mpbid φ A = B