Metamath Proof Explorer


Theorem extdgfialglem1

Description: Lemma for extdgfialg . (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses extdgfialg.b B = Base E
extdgfialg.d D = dim subringAlg E F
extdgfialg.e φ E Field
extdgfialg.f φ F SubDRing E
extdgfialg.1 φ D 0
extdgfialglem1.2 Z = 0 E
extdgfialglem1.3 · ˙ = E
extdgfialglem1.r G = n 0 D n mulGrp subringAlg E F X
extdgfialglem1.4 φ X B
Assertion extdgfialglem1 φ a F 0 D finSupp Z a E a · ˙ f G = Z a 0 D × Z

Proof

Step Hyp Ref Expression
1 extdgfialg.b B = Base E
2 extdgfialg.d D = dim subringAlg E F
3 extdgfialg.e φ E Field
4 extdgfialg.f φ F SubDRing E
5 extdgfialg.1 φ D 0
6 extdgfialglem1.2 Z = 0 E
7 extdgfialglem1.3 · ˙ = E
8 extdgfialglem1.r G = n 0 D n mulGrp subringAlg E F X
9 extdgfialglem1.4 φ X B
10 simplr φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b b LBasis subringAlg E F
11 3 flddrngd φ E DivRing
12 eqid E 𝑠 F = E 𝑠 F
13 12 sdrgdrng F SubDRing E E 𝑠 F DivRing
14 4 13 syl φ E 𝑠 F DivRing
15 sdrgsubrg F SubDRing E F SubRing E
16 4 15 syl φ F SubRing E
17 eqid subringAlg E F = subringAlg E F
18 17 12 sralvec E DivRing E 𝑠 F DivRing F SubRing E subringAlg E F LVec
19 11 14 16 18 syl3anc φ subringAlg E F LVec
20 19 ad2antrr φ G : dom G 1-1 V ran G LIndS subringAlg E F subringAlg E F LVec
21 20 ad2antrr φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b subringAlg E F LVec
22 eqid LBasis subringAlg E F = LBasis subringAlg E F
23 22 dimval subringAlg E F LVec b LBasis subringAlg E F dim subringAlg E F = b
24 2 23 eqtrid subringAlg E F LVec b LBasis subringAlg E F D = b
25 21 10 24 syl2anc φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b D = b
26 5 ad4antr φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b D 0
27 25 26 eqeltrrd φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b b 0
28 hashclb b LBasis subringAlg E F b Fin b 0
29 28 biimpar b LBasis subringAlg E F b 0 b Fin
30 10 27 29 syl2anc φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b b Fin
31 hashss b Fin ran G b ran G b
32 30 31 sylancom φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b ran G b
33 8 dmeqi dom G = dom n 0 D n mulGrp subringAlg E F X
34 eqid n 0 D n mulGrp subringAlg E F X = n 0 D n mulGrp subringAlg E F X
35 ovexd φ G : dom G 1-1 V n 0 D n mulGrp subringAlg E F X V
36 34 35 dmmptd φ G : dom G 1-1 V dom n 0 D n mulGrp subringAlg E F X = 0 D
37 ovexd φ G : dom G 1-1 V 0 D V
38 36 37 eqeltrd φ G : dom G 1-1 V dom n 0 D n mulGrp subringAlg E F X V
39 33 38 eqeltrid φ G : dom G 1-1 V dom G V
40 hashf1rn dom G V G : dom G 1-1 V G = ran G
41 39 40 sylancom φ G : dom G 1-1 V G = ran G
42 41 ad3antrrr φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b G = ran G
43 32 42 25 3brtr4d φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b G D
44 22 islinds4 subringAlg E F LVec ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b
45 44 biimpa subringAlg E F LVec ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b
46 20 45 sylancom φ G : dom G 1-1 V ran G LIndS subringAlg E F b LBasis subringAlg E F ran G b
47 43 46 r19.29a φ G : dom G 1-1 V ran G LIndS subringAlg E F G D
48 5 nn0red φ D
49 48 ad2antrr φ G : dom G 1-1 V ran G LIndS subringAlg E F D
50 49 ltp1d φ G : dom G 1-1 V ran G LIndS subringAlg E F D < D + 1
51 fzfid φ 0 D Fin
52 51 mptexd φ n 0 D n mulGrp subringAlg E F X V
53 8 52 eqeltrid φ G V
54 53 adantr φ G : dom G 1-1 V G V
55 f1f G : dom G 1-1 V G : dom G V
56 55 adantl φ G : dom G 1-1 V G : dom G V
57 56 ffund φ G : dom G 1-1 V Fun G
58 hashfundm G V Fun G G = dom G
59 54 57 58 syl2anc φ G : dom G 1-1 V G = dom G
60 8 35 dmmptd φ G : dom G 1-1 V dom G = 0 D
61 60 fveq2d φ G : dom G 1-1 V dom G = 0 D
62 hashfz0 D 0 0 D = D + 1
63 5 62 syl φ 0 D = D + 1
64 63 adantr φ G : dom G 1-1 V 0 D = D + 1
65 59 61 64 3eqtrd φ G : dom G 1-1 V G = D + 1
66 65 adantr φ G : dom G 1-1 V ran G LIndS subringAlg E F G = D + 1
67 50 66 breqtrrd φ G : dom G 1-1 V ran G LIndS subringAlg E F D < G
68 49 rexrd φ G : dom G 1-1 V ran G LIndS subringAlg E F D *
69 54 adantr φ G : dom G 1-1 V ran G LIndS subringAlg E F G V
70 hashxrcl G V G *
71 69 70 syl φ G : dom G 1-1 V ran G LIndS subringAlg E F G *
72 68 71 xrltnled φ G : dom G 1-1 V ran G LIndS subringAlg E F D < G ¬ G D
73 67 72 mpbid φ G : dom G 1-1 V ran G LIndS subringAlg E F ¬ G D
74 47 73 pm2.65da φ G : dom G 1-1 V ¬ ran G LIndS subringAlg E F
75 74 ex φ G : dom G 1-1 V ¬ ran G LIndS subringAlg E F
76 imnan G : dom G 1-1 V ¬ ran G LIndS subringAlg E F ¬ G : dom G 1-1 V ran G LIndS subringAlg E F
77 75 76 sylib φ ¬ G : dom G 1-1 V ran G LIndS subringAlg E F
78 19 lveclmodd φ subringAlg E F LMod
79 eqidd φ subringAlg E F = subringAlg E F
80 1 sdrgss F SubDRing E F B
81 4 80 syl φ F B
82 81 1 sseqtrdi φ F Base E
83 79 82 srasca φ E 𝑠 F = Scalar subringAlg E F
84 drngnzr E 𝑠 F DivRing E 𝑠 F NzRing
85 14 84 syl φ E 𝑠 F NzRing
86 83 85 eqeltrrd φ Scalar subringAlg E F NzRing
87 eqid Scalar subringAlg E F = Scalar subringAlg E F
88 87 islindf3 subringAlg E F LMod Scalar subringAlg E F NzRing G LIndF subringAlg E F G : dom G 1-1 V ran G LIndS subringAlg E F
89 78 86 88 syl2anc φ G LIndF subringAlg E F G : dom G 1-1 V ran G LIndS subringAlg E F
90 77 89 mtbird φ ¬ G LIndF subringAlg E F
91 ovexd φ 0 D V
92 eqid mulGrp subringAlg E F = mulGrp subringAlg E F
93 eqid Base subringAlg E F = Base subringAlg E F
94 92 93 mgpbas Base subringAlg E F = Base mulGrp subringAlg E F
95 eqid mulGrp subringAlg E F = mulGrp subringAlg E F
96 3 fldcrngd φ E CRing
97 96 crngringd φ E Ring
98 17 1 sraring E Ring F B subringAlg E F Ring
99 97 81 98 syl2anc φ subringAlg E F Ring
100 92 ringmgp subringAlg E F Ring mulGrp subringAlg E F Mnd
101 99 100 syl φ mulGrp subringAlg E F Mnd
102 101 adantr φ n 0 D mulGrp subringAlg E F Mnd
103 fz0ssnn0 0 D 0
104 103 a1i φ 0 D 0
105 104 sselda φ n 0 D n 0
106 79 82 srabase φ Base E = Base subringAlg E F
107 1 106 eqtr2id φ Base subringAlg E F = B
108 9 107 eleqtrrd φ X Base subringAlg E F
109 108 adantr φ n 0 D X Base subringAlg E F
110 94 95 102 105 109 mulgnn0cld φ n 0 D n mulGrp subringAlg E F X Base subringAlg E F
111 110 8 fmptd φ G : 0 D Base subringAlg E F
112 eqid subringAlg E F = subringAlg E F
113 eqid 0 subringAlg E F = 0 subringAlg E F
114 eqid 0 Scalar subringAlg E F = 0 Scalar subringAlg E F
115 eqid Base Scalar subringAlg E F freeLMod 0 D = Base Scalar subringAlg E F freeLMod 0 D
116 93 87 112 113 114 115 islindf4 subringAlg E F LMod 0 D V G : 0 D Base subringAlg E F G LIndF subringAlg E F a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F a = 0 D × 0 Scalar subringAlg E F
117 78 91 111 116 syl3anc φ G LIndF subringAlg E F a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F a = 0 D × 0 Scalar subringAlg E F
118 90 117 mtbid φ ¬ a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F a = 0 D × 0 Scalar subringAlg E F
119 rexanali a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F ¬ a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F a = 0 D × 0 Scalar subringAlg E F
120 118 119 sylibr φ a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F
121 fvex Scalar subringAlg E F V
122 ovex 0 D V
123 eqid Scalar subringAlg E F freeLMod 0 D = Scalar subringAlg E F freeLMod 0 D
124 eqid Base Scalar subringAlg E F = Base Scalar subringAlg E F
125 123 124 114 115 frlmelbas Scalar subringAlg E F V 0 D V a Base Scalar subringAlg E F freeLMod 0 D a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a
126 121 122 125 mp2an a Base Scalar subringAlg E F freeLMod 0 D a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a
127 126 anbi1i a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F
128 df-ne a 0 D × 0 Scalar subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F
129 128 anbi2i subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F subringAlg E F a subringAlg E F f G = 0 subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F
130 129 anbi2i a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F
131 anass a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F
132 127 130 131 3bitr3i a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F
133 132 rexbii2 a Base Scalar subringAlg E F freeLMod 0 D subringAlg E F a subringAlg E F f G = 0 subringAlg E F ¬ a = 0 D × 0 Scalar subringAlg E F a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F
134 120 133 sylib φ a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F
135 12 1 ressbas2 F B F = Base E 𝑠 F
136 81 135 syl φ F = Base E 𝑠 F
137 83 fveq2d φ Base E 𝑠 F = Base Scalar subringAlg E F
138 136 137 eqtr2d φ Base Scalar subringAlg E F = F
139 138 oveq1d φ Base Scalar subringAlg E F 0 D = F 0 D
140 96 crnggrpd φ E Grp
141 140 grpmndd φ E Mnd
142 subrgsubg F SubRing E F SubGrp E
143 16 142 syl φ F SubGrp E
144 eqid 0 E = 0 E
145 144 subg0cl F SubGrp E 0 E F
146 143 145 syl φ 0 E F
147 12 1 144 ress0g E Mnd 0 E F F B 0 E = 0 E 𝑠 F
148 141 146 81 147 syl3anc φ 0 E = 0 E 𝑠 F
149 83 fveq2d φ 0 E 𝑠 F = 0 Scalar subringAlg E F
150 148 149 eqtr2d φ 0 Scalar subringAlg E F = 0 E
151 150 6 eqtr4di φ 0 Scalar subringAlg E F = Z
152 151 breq2d φ finSupp 0 Scalar subringAlg E F a finSupp Z a
153 79 82 sravsca φ E = subringAlg E F
154 7 153 eqtr2id φ subringAlg E F = · ˙
155 154 ofeqd φ f subringAlg E F = f · ˙
156 155 oveqd φ a subringAlg E F f G = a · ˙ f G
157 156 oveq2d φ subringAlg E F a subringAlg E F f G = subringAlg E F a · ˙ f G
158 ovexd φ a · ˙ f G V
159 17 158 3 19 82 gsumsra φ E a · ˙ f G = subringAlg E F a · ˙ f G
160 157 159 eqtr4d φ subringAlg E F a subringAlg E F f G = E a · ˙ f G
161 6 a1i φ Z = 0 E
162 79 161 82 sralmod0 φ Z = 0 subringAlg E F
163 162 eqcomd φ 0 subringAlg E F = Z
164 160 163 eqeq12d φ subringAlg E F a subringAlg E F f G = 0 subringAlg E F E a · ˙ f G = Z
165 151 sneqd φ 0 Scalar subringAlg E F = Z
166 165 xpeq2d φ 0 D × 0 Scalar subringAlg E F = 0 D × Z
167 166 neeq2d φ a 0 D × 0 Scalar subringAlg E F a 0 D × Z
168 164 167 anbi12d φ subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F E a · ˙ f G = Z a 0 D × Z
169 152 168 anbi12d φ finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F finSupp Z a E a · ˙ f G = Z a 0 D × Z
170 139 169 rexeqbidv φ a Base Scalar subringAlg E F 0 D finSupp 0 Scalar subringAlg E F a subringAlg E F a subringAlg E F f G = 0 subringAlg E F a 0 D × 0 Scalar subringAlg E F a F 0 D finSupp Z a E a · ˙ f G = Z a 0 D × Z
171 134 170 mpbid φ a F 0 D finSupp Z a E a · ˙ f G = Z a 0 D × Z