Metamath Proof Explorer


Theorem frgpup3lem

Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses frgpup.b B=BaseH
frgpup.n N=invgH
frgpup.t T=yI,z2𝑜ifz=FyNFy
frgpup.h φHGrp
frgpup.i φIV
frgpup.a φF:IB
frgpup.w W=IWordI×2𝑜
frgpup.r ˙=~FGI
frgpup.g G=freeGrpI
frgpup.x X=BaseG
frgpup.e E=rangWg˙HTg
frgpup.u U=varFGrpI
frgpup3.k φKGGrpHomH
frgpup3.e φKU=F
Assertion frgpup3lem φK=E

Proof

Step Hyp Ref Expression
1 frgpup.b B=BaseH
2 frgpup.n N=invgH
3 frgpup.t T=yI,z2𝑜ifz=FyNFy
4 frgpup.h φHGrp
5 frgpup.i φIV
6 frgpup.a φF:IB
7 frgpup.w W=IWordI×2𝑜
8 frgpup.r ˙=~FGI
9 frgpup.g G=freeGrpI
10 frgpup.x X=BaseG
11 frgpup.e E=rangWg˙HTg
12 frgpup.u U=varFGrpI
13 frgpup3.k φKGGrpHomH
14 frgpup3.e φKU=F
15 10 1 ghmf KGGrpHomHK:XB
16 ffn K:XBKFnX
17 13 15 16 3syl φKFnX
18 1 2 3 4 5 6 7 8 9 10 11 frgpup1 φEGGrpHomH
19 10 1 ghmf EGGrpHomHE:XB
20 ffn E:XBEFnX
21 18 19 20 3syl φEFnX
22 eqid freeMndI×2𝑜=freeMndI×2𝑜
23 9 22 8 frgpval IVG=freeMndI×2𝑜/𝑠˙
24 5 23 syl φG=freeMndI×2𝑜/𝑠˙
25 2on 2𝑜On
26 xpexg IV2𝑜OnI×2𝑜V
27 5 25 26 sylancl φI×2𝑜V
28 wrdexg I×2𝑜VWordI×2𝑜V
29 fvi WordI×2𝑜VIWordI×2𝑜=WordI×2𝑜
30 27 28 29 3syl φIWordI×2𝑜=WordI×2𝑜
31 7 30 eqtrid φW=WordI×2𝑜
32 eqid BasefreeMndI×2𝑜=BasefreeMndI×2𝑜
33 22 32 frmdbas I×2𝑜VBasefreeMndI×2𝑜=WordI×2𝑜
34 27 33 syl φBasefreeMndI×2𝑜=WordI×2𝑜
35 31 34 eqtr4d φW=BasefreeMndI×2𝑜
36 8 fvexi ˙V
37 36 a1i φ˙V
38 fvexd φfreeMndI×2𝑜V
39 24 35 37 38 qusbas φW/˙=BaseG
40 10 39 eqtr4id φX=W/˙
41 eqimss X=W/˙XW/˙
42 40 41 syl φXW/˙
43 42 sselda φaXaW/˙
44 eqid W/˙=W/˙
45 fveq2 t˙=aKt˙=Ka
46 fveq2 t˙=aEt˙=Ea
47 45 46 eqeq12d t˙=aKt˙=Et˙Ka=Ea
48 simpr φtWtW
49 31 adantr φtWW=WordI×2𝑜
50 48 49 eleqtrd φtWtWordI×2𝑜
51 wrdf tWordI×2𝑜t:0..^tI×2𝑜
52 50 51 syl φtWt:0..^tI×2𝑜
53 52 ffvelcdmda φtWn0..^ttnI×2𝑜
54 elxp2 tnI×2𝑜iIj2𝑜tn=ij
55 53 54 sylib φtWn0..^tiIj2𝑜tn=ij
56 fveq2 y=iFy=Fi
57 56 fveq2d y=iNFy=NFi
58 56 57 ifeq12d y=iifz=FyNFy=ifz=FiNFi
59 eqeq1 z=jz=j=
60 59 ifbid z=jifz=FiNFi=ifj=FiNFi
61 fvex FiV
62 fvex NFiV
63 61 62 ifex ifj=FiNFiV
64 58 60 3 63 ovmpo iIj2𝑜iTj=ifj=FiNFi
65 64 adantl φiIj2𝑜iTj=ifj=FiNFi
66 elpri j1𝑜j=j=1𝑜
67 df2o3 2𝑜=1𝑜
68 66 67 eleq2s j2𝑜j=j=1𝑜
69 14 adantr φiIKU=F
70 69 fveq1d φiIKUi=Fi
71 8 12 9 10 vrgpf IVU:IX
72 5 71 syl φU:IX
73 fvco3 U:IXiIKUi=KUi
74 72 73 sylan φiIKUi=KUi
75 70 74 eqtr3d φiIFi=KUi
76 75 adantr φiIj=Fi=KUi
77 iftrue j=ifj=FiNFi=Fi
78 77 adantl φiIj=ifj=FiNFi=Fi
79 simpr φiIj=j=
80 79 opeq2d φiIj=ij=i
81 80 s1eqd φiIj=⟨“ij”⟩=⟨“i”⟩
82 81 eceq1d φiIj=⟨“ij”⟩˙=⟨“i”⟩˙
83 8 12 vrgpval IViIUi=⟨“i”⟩˙
84 5 83 sylan φiIUi=⟨“i”⟩˙
85 84 adantr φiIj=Ui=⟨“i”⟩˙
86 82 85 eqtr4d φiIj=⟨“ij”⟩˙=Ui
87 86 fveq2d φiIj=K⟨“ij”⟩˙=KUi
88 76 78 87 3eqtr4d φiIj=ifj=FiNFi=K⟨“ij”⟩˙
89 75 fveq2d φiINFi=NKUi
90 72 ffvelcdmda φiIUiX
91 eqid invgG=invgG
92 10 91 2 ghminv KGGrpHomHUiXKinvgGUi=NKUi
93 13 90 92 syl2an2r φiIKinvgGUi=NKUi
94 89 93 eqtr4d φiINFi=KinvgGUi
95 94 adantr φiIj=1𝑜NFi=KinvgGUi
96 1n0 1𝑜
97 simpr φiIj=1𝑜j=1𝑜
98 97 neeq1d φiIj=1𝑜j1𝑜
99 96 98 mpbiri φiIj=1𝑜j
100 ifnefalse jifj=FiNFi=NFi
101 99 100 syl φiIj=1𝑜ifj=FiNFi=NFi
102 97 opeq2d φiIj=1𝑜ij=i1𝑜
103 102 s1eqd φiIj=1𝑜⟨“ij”⟩=⟨“i1𝑜”⟩
104 103 eceq1d φiIj=1𝑜⟨“ij”⟩˙=⟨“i1𝑜”⟩˙
105 8 12 9 91 vrgpinv IViIinvgGUi=⟨“i1𝑜”⟩˙
106 5 105 sylan φiIinvgGUi=⟨“i1𝑜”⟩˙
107 106 adantr φiIj=1𝑜invgGUi=⟨“i1𝑜”⟩˙
108 104 107 eqtr4d φiIj=1𝑜⟨“ij”⟩˙=invgGUi
109 108 fveq2d φiIj=1𝑜K⟨“ij”⟩˙=KinvgGUi
110 95 101 109 3eqtr4d φiIj=1𝑜ifj=FiNFi=K⟨“ij”⟩˙
111 88 110 jaodan φiIj=j=1𝑜ifj=FiNFi=K⟨“ij”⟩˙
112 68 111 sylan2 φiIj2𝑜ifj=FiNFi=K⟨“ij”⟩˙
113 112 anasss φiIj2𝑜ifj=FiNFi=K⟨“ij”⟩˙
114 65 113 eqtrd φiIj2𝑜iTj=K⟨“ij”⟩˙
115 fveq2 tn=ijTtn=Tij
116 df-ov iTj=Tij
117 115 116 eqtr4di tn=ijTtn=iTj
118 s1eq tn=ij⟨“tn”⟩=⟨“ij”⟩
119 118 eceq1d tn=ij⟨“tn”⟩˙=⟨“ij”⟩˙
120 119 fveq2d tn=ijK⟨“tn”⟩˙=K⟨“ij”⟩˙
121 117 120 eqeq12d tn=ijTtn=K⟨“tn”⟩˙iTj=K⟨“ij”⟩˙
122 114 121 syl5ibrcom φiIj2𝑜tn=ijTtn=K⟨“tn”⟩˙
123 122 rexlimdvva φiIj2𝑜tn=ijTtn=K⟨“tn”⟩˙
124 123 ad2antrr φtWn0..^tiIj2𝑜tn=ijTtn=K⟨“tn”⟩˙
125 55 124 mpd φtWn0..^tTtn=K⟨“tn”⟩˙
126 125 mpteq2dva φtWn0..^tTtn=n0..^tK⟨“tn”⟩˙
127 1 2 3 4 5 6 frgpuptf φT:I×2𝑜B
128 fcompt T:I×2𝑜Bt:0..^tI×2𝑜Tt=n0..^tTtn
129 127 52 128 syl2an2r φtWTt=n0..^tTtn
130 53 s1cld φtWn0..^t⟨“tn”⟩WordI×2𝑜
131 31 ad2antrr φtWn0..^tW=WordI×2𝑜
132 130 131 eleqtrrd φtWn0..^t⟨“tn”⟩W
133 9 8 7 10 frgpeccl ⟨“tn”⟩W⟨“tn”⟩˙X
134 132 133 syl φtWn0..^t⟨“tn”⟩˙X
135 52 feqmptd φtWt=n0..^ttn
136 5 adantr φtWIV
137 136 25 26 sylancl φtWI×2𝑜V
138 eqid varFMndI×2𝑜=varFMndI×2𝑜
139 138 vrmdfval I×2𝑜VvarFMndI×2𝑜=wI×2𝑜⟨“w”⟩
140 137 139 syl φtWvarFMndI×2𝑜=wI×2𝑜⟨“w”⟩
141 s1eq w=tn⟨“w”⟩=⟨“tn”⟩
142 53 135 140 141 fmptco φtWvarFMndI×2𝑜t=n0..^t⟨“tn”⟩
143 eqidd φtWwWw˙=wWw˙
144 eceq1 w=⟨“tn”⟩w˙=⟨“tn”⟩˙
145 132 142 143 144 fmptco φtWwWw˙varFMndI×2𝑜t=n0..^t⟨“tn”⟩˙
146 13 adantr φtWKGGrpHomH
147 146 15 syl φtWK:XB
148 147 feqmptd φtWK=wXKw
149 fveq2 w=⟨“tn”⟩˙Kw=K⟨“tn”⟩˙
150 134 145 148 149 fmptco φtWKwWw˙varFMndI×2𝑜t=n0..^tK⟨“tn”⟩˙
151 126 129 150 3eqtr4d φtWTt=KwWw˙varFMndI×2𝑜t
152 151 oveq2d φtWHTt=HKwWw˙varFMndI×2𝑜t
153 1 2 3 4 5 6 7 8 9 10 11 frgpupval φtWEt˙=HTt
154 ghmmhm KGGrpHomHKGMndHomH
155 146 154 syl φtWKGMndHomH
156 138 vrmdf I×2𝑜VvarFMndI×2𝑜:I×2𝑜WordI×2𝑜
157 137 156 syl φtWvarFMndI×2𝑜:I×2𝑜WordI×2𝑜
158 49 feq3d φtWvarFMndI×2𝑜:I×2𝑜WvarFMndI×2𝑜:I×2𝑜WordI×2𝑜
159 157 158 mpbird φtWvarFMndI×2𝑜:I×2𝑜W
160 wrdco tWordI×2𝑜varFMndI×2𝑜:I×2𝑜WvarFMndI×2𝑜tWordW
161 50 159 160 syl2anc φtWvarFMndI×2𝑜tWordW
162 35 adantr φtWW=BasefreeMndI×2𝑜
163 162 mpteq1d φtWwWw˙=wBasefreeMndI×2𝑜w˙
164 eqid wBasefreeMndI×2𝑜w˙=wBasefreeMndI×2𝑜w˙
165 22 32 9 8 164 frgpmhm IVwBasefreeMndI×2𝑜w˙freeMndI×2𝑜MndHomG
166 136 165 syl φtWwBasefreeMndI×2𝑜w˙freeMndI×2𝑜MndHomG
167 163 166 eqeltrd φtWwWw˙freeMndI×2𝑜MndHomG
168 32 10 mhmf wWw˙freeMndI×2𝑜MndHomGwWw˙:BasefreeMndI×2𝑜X
169 167 168 syl φtWwWw˙:BasefreeMndI×2𝑜X
170 162 feq2d φtWwWw˙:WXwWw˙:BasefreeMndI×2𝑜X
171 169 170 mpbird φtWwWw˙:WX
172 wrdco varFMndI×2𝑜tWordWwWw˙:WXwWw˙varFMndI×2𝑜tWordX
173 161 171 172 syl2anc φtWwWw˙varFMndI×2𝑜tWordX
174 10 gsumwmhm KGMndHomHwWw˙varFMndI×2𝑜tWordXKGwWw˙varFMndI×2𝑜t=HKwWw˙varFMndI×2𝑜t
175 155 173 174 syl2anc φtWKGwWw˙varFMndI×2𝑜t=HKwWw˙varFMndI×2𝑜t
176 152 153 175 3eqtr4d φtWEt˙=KGwWw˙varFMndI×2𝑜t
177 22 138 frmdgsum I×2𝑜VtWordI×2𝑜freeMndI×2𝑜varFMndI×2𝑜t=t
178 27 50 177 syl2an2r φtWfreeMndI×2𝑜varFMndI×2𝑜t=t
179 178 fveq2d φtWwWw˙freeMndI×2𝑜varFMndI×2𝑜t=wWw˙t
180 wrdco tWordI×2𝑜varFMndI×2𝑜:I×2𝑜WordI×2𝑜varFMndI×2𝑜tWordWordI×2𝑜
181 50 157 180 syl2anc φtWvarFMndI×2𝑜tWordWordI×2𝑜
182 34 adantr φtWBasefreeMndI×2𝑜=WordI×2𝑜
183 wrdeq BasefreeMndI×2𝑜=WordI×2𝑜WordBasefreeMndI×2𝑜=WordWordI×2𝑜
184 182 183 syl φtWWordBasefreeMndI×2𝑜=WordWordI×2𝑜
185 181 184 eleqtrrd φtWvarFMndI×2𝑜tWordBasefreeMndI×2𝑜
186 32 gsumwmhm wWw˙freeMndI×2𝑜MndHomGvarFMndI×2𝑜tWordBasefreeMndI×2𝑜wWw˙freeMndI×2𝑜varFMndI×2𝑜t=GwWw˙varFMndI×2𝑜t
187 167 185 186 syl2anc φtWwWw˙freeMndI×2𝑜varFMndI×2𝑜t=GwWw˙varFMndI×2𝑜t
188 7 8 efger ˙ErW
189 188 a1i φtW˙ErW
190 7 fvexi WV
191 190 a1i φtWWV
192 eqid wWw˙=wWw˙
193 189 191 192 divsfval φtWwWw˙t=t˙
194 179 187 193 3eqtr3d φtWGwWw˙varFMndI×2𝑜t=t˙
195 194 fveq2d φtWKGwWw˙varFMndI×2𝑜t=Kt˙
196 176 195 eqtr2d φtWKt˙=Et˙
197 44 47 196 ectocld φaW/˙Ka=Ea
198 43 197 syldan φaXKa=Ea
199 17 21 198 eqfnfvd φK=E