Metamath Proof Explorer


Theorem frlmsslsp

Description: A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by AV, 24-Jun-2019)

Ref Expression
Hypotheses frlmsslsp.y Y=RfreeLModI
frlmsslsp.u U=RunitVecI
frlmsslsp.k K=LSpanY
frlmsslsp.b B=BaseY
frlmsslsp.z 0˙=0R
frlmsslsp.c C=xB|xsupp0˙J
Assertion frlmsslsp RRingIVJIKUJ=C

Proof

Step Hyp Ref Expression
1 frlmsslsp.y Y=RfreeLModI
2 frlmsslsp.u U=RunitVecI
3 frlmsslsp.k K=LSpanY
4 frlmsslsp.b B=BaseY
5 frlmsslsp.z 0˙=0R
6 frlmsslsp.c C=xB|xsupp0˙J
7 1 frlmlmod RRingIVYLMod
8 7 3adant3 RRingIVJIYLMod
9 eqid LSubSpY=LSubSpY
10 1 9 4 5 6 frlmsslss2 RRingIVJICLSubSpY
11 2 1 4 uvcff RRingIVU:IB
12 11 3adant3 RRingIVJIU:IB
13 12 adantr RRingIVJIyJU:IB
14 simp3 RRingIVJIJI
15 14 sselda RRingIVJIyJyI
16 13 15 ffvelcdmd RRingIVJIyJUyB
17 simpl2 RRingIVJIyJIV
18 eqid BaseR=BaseR
19 1 18 4 frlmbasf IVUyBUy:IBaseR
20 17 16 19 syl2anc RRingIVJIyJUy:IBaseR
21 simpll1 RRingIVJIyJxIJRRing
22 simpll2 RRingIVJIyJxIJIV
23 15 adantr RRingIVJIyJxIJyI
24 eldifi xIJxI
25 24 adantl RRingIVJIyJxIJxI
26 elneeldif yJxIJyx
27 26 adantll RRingIVJIyJxIJyx
28 2 21 22 23 25 27 5 uvcvv0 RRingIVJIyJxIJUyx=0˙
29 20 28 suppss RRingIVJIyJUysupp0˙J
30 oveq1 x=Uyxsupp0˙=Uysupp0˙
31 30 sseq1d x=Uyxsupp0˙JUysupp0˙J
32 31 6 elrab2 UyCUyBUysupp0˙J
33 16 29 32 sylanbrc RRingIVJIyJUyC
34 33 ralrimiva RRingIVJIyJUyC
35 12 ffund RRingIVJIFunU
36 12 fdmd RRingIVJIdomU=I
37 14 36 sseqtrrd RRingIVJIJdomU
38 funimass4 FunUJdomUUJCyJUyC
39 35 37 38 syl2anc RRingIVJIUJCyJUyC
40 34 39 mpbird RRingIVJIUJC
41 9 3 lspssp YLModCLSubSpYUJCKUJC
42 8 10 40 41 syl3anc RRingIVJIKUJC
43 simpl1 RRingIVJIyCRRing
44 simpl2 RRingIVJIyCIV
45 6 ssrab3 CB
46 45 a1i RRingIVJICB
47 46 sselda RRingIVJIyCyB
48 eqid Y=Y
49 2 1 4 48 uvcresum RRingIVyBy=YyYfU
50 43 44 47 49 syl3anc RRingIVJIyCy=YyYfU
51 eqid 0Y=0Y
52 lmodabl YLModYAbel
53 8 52 syl RRingIVJIYAbel
54 53 adantr RRingIVJIyCYAbel
55 imassrn UJranU
56 12 frnd RRingIVJIranUB
57 55 56 sstrid RRingIVJIUJB
58 4 9 3 lspcl YLModUJBKUJLSubSpY
59 8 57 58 syl2anc RRingIVJIKUJLSubSpY
60 9 lsssubg YLModKUJLSubSpYKUJSubGrpY
61 8 59 60 syl2anc RRingIVJIKUJSubGrpY
62 61 adantr RRingIVJIyCKUJSubGrpY
63 1 18 4 frlmbasf IVyBy:IBaseR
64 63 3ad2antl2 RRingIVJIyBy:IBaseR
65 64 ffnd RRingIVJIyByFnI
66 12 ffnd RRingIVJIUFnI
67 66 adantr RRingIVJIyBUFnI
68 simpl2 RRingIVJIyBIV
69 inidm II=I
70 65 67 68 68 69 offn RRingIVJIyByYfUFnI
71 47 70 syldan RRingIVJIyCyYfUFnI
72 47 65 syldan RRingIVJIyCyFnI
73 72 adantrr RRingIVJIyCzIyFnI
74 66 adantr RRingIVJIyCzIUFnI
75 simpl2 RRingIVJIyCzIIV
76 simprr RRingIVJIyCzIzI
77 fnfvof yFnIUFnIIVzIyYfUz=yzYUz
78 73 74 75 76 77 syl22anc RRingIVJIyCzIyYfUz=yzYUz
79 8 adantr RRingIVJIyCzJYLMod
80 59 adantr RRingIVJIyCzJKUJLSubSpY
81 45 sseli yCyB
82 81 64 sylan2 RRingIVJIyCy:IBaseR
83 82 adantrr RRingIVJIyCzJy:IBaseR
84 14 sselda RRingIVJIzJzI
85 84 adantrl RRingIVJIyCzJzI
86 83 85 ffvelcdmd RRingIVJIyCzJyzBaseR
87 1 frlmsca RRingIVR=ScalarY
88 87 3adant3 RRingIVJIR=ScalarY
89 88 fveq2d RRingIVJIBaseR=BaseScalarY
90 89 adantr RRingIVJIyCzJBaseR=BaseScalarY
91 86 90 eleqtrd RRingIVJIyCzJyzBaseScalarY
92 4 3 lspssid YLModUJBUJKUJ
93 8 57 92 syl2anc RRingIVJIUJKUJ
94 93 adantr RRingIVJIyCzJUJKUJ
95 funfvima2 FunUJdomUzJUzUJ
96 35 37 95 syl2anc RRingIVJIzJUzUJ
97 96 imp RRingIVJIzJUzUJ
98 97 adantrl RRingIVJIyCzJUzUJ
99 94 98 sseldd RRingIVJIyCzJUzKUJ
100 eqid ScalarY=ScalarY
101 eqid BaseScalarY=BaseScalarY
102 100 48 101 9 lssvscl YLModKUJLSubSpYyzBaseScalarYUzKUJyzYUzKUJ
103 79 80 91 99 102 syl22anc RRingIVJIyCzJyzYUzKUJ
104 103 anassrs RRingIVJIyCzJyzYUzKUJ
105 104 adantlrr RRingIVJIyCzIzJyzYUzKUJ
106 id RRingIVJIyCRRingIVJIyC
107 106 adantrr RRingIVJIyCzIRRingIVJIyC
108 107 adantr RRingIVJIyCzI¬zJRRingIVJIyC
109 simplrr RRingIVJIyCzI¬zJzI
110 simpr RRingIVJIyCzI¬zJ¬zJ
111 109 110 eldifd RRingIVJIyCzI¬zJzIJ
112 oveq1 x=yxsupp0˙=ysupp0˙
113 112 sseq1d x=yxsupp0˙Jysupp0˙J
114 113 6 elrab2 yCyBysupp0˙J
115 114 simprbi yCysupp0˙J
116 115 adantl RRingIVJIyCysupp0˙J
117 5 fvexi 0˙V
118 117 a1i RRingIVJIyC0˙V
119 82 116 44 118 suppssr RRingIVJIyCzIJyz=0˙
120 108 111 119 syl2anc RRingIVJIyCzI¬zJyz=0˙
121 88 fveq2d RRingIVJI0R=0ScalarY
122 5 121 eqtrid RRingIVJI0˙=0ScalarY
123 122 ad2antrr RRingIVJIyCzI¬zJ0˙=0ScalarY
124 120 123 eqtrd RRingIVJIyCzI¬zJyz=0ScalarY
125 124 oveq1d RRingIVJIyCzI¬zJyzYUz=0ScalarYYUz
126 8 ad2antrr RRingIVJIyCzI¬zJYLMod
127 12 ffvelcdmda RRingIVJIzIUzB
128 127 adantrl RRingIVJIyCzIUzB
129 128 adantr RRingIVJIyCzI¬zJUzB
130 eqid 0ScalarY=0ScalarY
131 4 100 48 130 51 lmod0vs YLModUzB0ScalarYYUz=0Y
132 126 129 131 syl2anc RRingIVJIyCzI¬zJ0ScalarYYUz=0Y
133 125 132 eqtrd RRingIVJIyCzI¬zJyzYUz=0Y
134 59 ad2antrr RRingIVJIyCzI¬zJKUJLSubSpY
135 51 9 lss0cl YLModKUJLSubSpY0YKUJ
136 126 134 135 syl2anc RRingIVJIyCzI¬zJ0YKUJ
137 133 136 eqeltrd RRingIVJIyCzI¬zJyzYUzKUJ
138 105 137 pm2.61dan RRingIVJIyCzIyzYUzKUJ
139 78 138 eqeltrd RRingIVJIyCzIyYfUzKUJ
140 139 expr RRingIVJIyCzIyYfUzKUJ
141 140 ralrimiv RRingIVJIyCzIyYfUzKUJ
142 ffnfv yYfU:IKUJyYfUFnIzIyYfUzKUJ
143 71 141 142 sylanbrc RRingIVJIyCyYfU:IKUJ
144 1 5 4 frlmbasfsupp IVyBfinSupp0˙y
145 144 fsuppimpd IVyBysupp0˙Fin
146 44 47 145 syl2anc RRingIVJIyCysupp0˙Fin
147 dffn2 yYfUFnIyYfU:IV
148 70 147 sylib RRingIVJIyByYfU:IV
149 65 adantr RRingIVJIyBxIsupp0˙yyFnI
150 66 ad2antrr RRingIVJIyBxIsupp0˙yUFnI
151 simpll2 RRingIVJIyBxIsupp0˙yIV
152 eldifi xIsupp0˙yxI
153 152 adantl RRingIVJIyBxIsupp0˙yxI
154 fnfvof yFnIUFnIIVxIyYfUx=yxYUx
155 149 150 151 153 154 syl22anc RRingIVJIyBxIsupp0˙yyYfUx=yxYUx
156 ssidd RRingIVJIyBysupp0˙ysupp0˙
157 117 a1i RRingIVJIyB0˙V
158 64 156 68 157 suppssr RRingIVJIyBxIsupp0˙yyx=0˙
159 122 ad2antrr RRingIVJIyBxIsupp0˙y0˙=0ScalarY
160 158 159 eqtrd RRingIVJIyBxIsupp0˙yyx=0ScalarY
161 160 oveq1d RRingIVJIyBxIsupp0˙yyxYUx=0ScalarYYUx
162 8 ad2antrr RRingIVJIyBxIsupp0˙yYLMod
163 12 adantr RRingIVJIyBU:IB
164 ffvelcdm U:IBxIUxB
165 163 152 164 syl2an RRingIVJIyBxIsupp0˙yUxB
166 4 100 48 130 51 lmod0vs YLModUxB0ScalarYYUx=0Y
167 162 165 166 syl2anc RRingIVJIyBxIsupp0˙y0ScalarYYUx=0Y
168 155 161 167 3eqtrd RRingIVJIyBxIsupp0˙yyYfUx=0Y
169 148 168 suppss RRingIVJIyByYfUsupp0Yysupp0˙
170 47 169 syldan RRingIVJIyCyYfUsupp0Yysupp0˙
171 146 170 ssfid RRingIVJIyCyYfUsupp0YFin
172 simp2 RRingIVJIIV
173 1 18 4 frlmbasmap IVyByBaseRI
174 172 81 173 syl2an RRingIVJIyCyBaseRI
175 elmapfn yBaseRIyFnI
176 174 175 syl RRingIVJIyCyFnI
177 12 adantr RRingIVJIyCU:IB
178 177 ffnd RRingIVJIyCUFnI
179 176 178 44 44 offun RRingIVJIyCFunyYfU
180 ovexd RRingIVJIyCyYfUV
181 fvexd RRingIVJIyC0YV
182 funisfsupp FunyYfUyYfUV0YVfinSupp0YyYfUyYfUsupp0YFin
183 179 180 181 182 syl3anc RRingIVJIyCfinSupp0YyYfUyYfUsupp0YFin
184 171 183 mpbird RRingIVJIyCfinSupp0YyYfU
185 51 54 44 62 143 184 gsumsubgcl RRingIVJIyCYyYfUKUJ
186 50 185 eqeltrd RRingIVJIyCyKUJ
187 42 186 eqelssd RRingIVJIKUJ=C