Metamath Proof Explorer


Theorem ftc1a

Description: The Fundamental Theorem of Calculus, part one. The function G formed by varying the right endpoint of an integral of F is continuous if F is integrable. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses ftc1.g G=xABAxFtdt
ftc1.a φA
ftc1.b φB
ftc1.le φAB
ftc1.s φABD
ftc1.d φD
ftc1.i φF𝐿1
ftc1a.f φF:D
Assertion ftc1a φG:ABcn

Proof

Step Hyp Ref Expression
1 ftc1.g G=xABAxFtdt
2 ftc1.a φA
3 ftc1.b φB
4 ftc1.le φAB
5 ftc1.s φABD
6 ftc1.d φD
7 ftc1.i φF𝐿1
8 ftc1a.f φF:D
9 1 2 3 4 5 6 7 8 ftc1lem2 φG:AB
10 fvexd φe+wDFwV
11 8 feqmptd φF=wDFw
12 11 7 eqeltrrd φwDFw𝐿1
13 12 adantr φe+wDFw𝐿1
14 simpr φe+e+
15 10 13 14 itgcn φe+d+udomvoluDvolu<duFwdw<e
16 oveq12 s=zr=ysr=zy
17 16 fveq2d s=zr=ysr=zy
18 17 breq1d s=zr=ysr<dzy<d
19 fveq2 s=zGs=Gz
20 fveq2 r=yGr=Gy
21 19 20 oveqan12d s=zr=yGsGr=GzGy
22 21 fveq2d s=zr=yGsGr=GzGy
23 22 breq1d s=zr=yGsGr<eGzGy<e
24 18 23 imbi12d s=zr=ysr<dGsGr<ezy<dGzGy<e
25 24 ancoms r=ys=zsr<dGsGr<ezy<dGzGy<e
26 oveq12 s=yr=zsr=yz
27 26 fveq2d s=yr=zsr=yz
28 27 breq1d s=yr=zsr<dyz<d
29 fveq2 s=yGs=Gy
30 fveq2 r=zGr=Gz
31 29 30 oveqan12d s=yr=zGsGr=GyGz
32 31 fveq2d s=yr=zGsGr=GyGz
33 32 breq1d s=yr=zGsGr<eGyGz<e
34 28 33 imbi12d s=yr=zsr<dGsGr<eyz<dGyGz<e
35 34 ancoms r=zs=ysr<dGsGr<eyz<dGyGz<e
36 iccssre ABAB
37 2 3 36 syl2anc φAB
38 37 ad2antrr φe+d+udomvoluDvolu<duFwdw<eAB
39 37 ad3antrrr φe+d+udomvoluDvolu<duFwdw<eyABzABAB
40 simprr φe+d+udomvoluDvolu<duFwdw<eyABzABzAB
41 39 40 sseldd φe+d+udomvoluDvolu<duFwdw<eyABzABz
42 41 recnd φe+d+udomvoluDvolu<duFwdw<eyABzABz
43 simprl φe+d+udomvoluDvolu<duFwdw<eyABzAByAB
44 39 43 sseldd φe+d+udomvoluDvolu<duFwdw<eyABzABy
45 44 recnd φe+d+udomvoluDvolu<duFwdw<eyABzABy
46 42 45 abssubd φe+d+udomvoluDvolu<duFwdw<eyABzABzy=yz
47 46 breq1d φe+d+udomvoluDvolu<duFwdw<eyABzABzy<dyz<d
48 9 ad3antrrr φe+d+udomvoluDvolu<duFwdw<eyABzABG:AB
49 48 40 ffvelcdmd φe+d+udomvoluDvolu<duFwdw<eyABzABGz
50 48 43 ffvelcdmd φe+d+udomvoluDvolu<duFwdw<eyABzABGy
51 49 50 abssubd φe+d+udomvoluDvolu<duFwdw<eyABzABGzGy=GyGz
52 51 breq1d φe+d+udomvoluDvolu<duFwdw<eyABzABGzGy<eGyGz<e
53 47 52 imbi12d φe+d+udomvoluDvolu<duFwdw<eyABzABzy<dGzGy<eyz<dGyGz<e
54 simpr3 φyABzAByzyz
55 2 adantr φyABzAByzA
56 3 adantr φyABzAByzB
57 4 adantr φyABzAByzAB
58 5 adantr φyABzAByzABD
59 6 adantr φyABzAByzD
60 7 adantr φyABzAByzF𝐿1
61 8 adantr φyABzAByzF:D
62 simpr1 φyABzAByzyAB
63 simpr2 φyABzAByzzAB
64 1 55 56 57 58 59 60 61 62 63 ftc1lem1 φyABzAByzyzGzGy=yzFtdt
65 54 64 mpdan φyABzAByzGzGy=yzFtdt
66 65 adantlr φe+d+yABzAByzGzGy=yzFtdt
67 66 ad2ant2r φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dGzGy=yzFtdt
68 67 fveq2d φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dGzGy=yzFtdt
69 fvexd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtyzFtV
70 2 ad3antrrr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dA
71 70 rexrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dA*
72 simprl1 φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyAB
73 3 ad3antrrr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dB
74 elicc2 AByAByAyyB
75 70 73 74 syl2anc φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyAByAyyB
76 72 75 mpbid φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyAyyB
77 76 simp2d φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dAy
78 iooss1 A*AyyzAz
79 71 77 78 syl2anc φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzAz
80 73 rexrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dB*
81 simprl2 φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzAB
82 elicc2 ABzABzAzzB
83 70 73 82 syl2anc φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzABzAzzB
84 81 83 mpbid φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzAzzB
85 84 simp3d φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzB
86 iooss2 B*zBAzAB
87 80 85 86 syl2anc φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dAzAB
88 79 87 sstrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzAB
89 5 ad3antrrr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dABD
90 88 89 sstrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzD
91 ioombl yzdomvol
92 91 a1i φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzdomvol
93 fvexd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtDFtV
94 8 feqmptd φF=tDFt
95 94 7 eqeltrrd φtDFt𝐿1
96 95 ad3antrrr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtDFt𝐿1
97 90 92 93 96 iblss φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtyzFt𝐿1
98 69 97 itgcl φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzFtdt
99 98 abscld φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzFtdt
100 iblmbf tyzFt𝐿1tyzFtMblFn
101 97 100 syl φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtyzFtMblFn
102 101 69 mbfmptcl φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtyzFt
103 102 abscld φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtyzFt
104 69 97 iblabs φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dtyzFt𝐿1
105 103 104 itgrecl φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzFtdt
106 simprl φe+d+e+
107 106 ad2antrr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<de+
108 107 rpred φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<de
109 69 97 itgabs φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzFtdtyzFtdt
110 mblvol yzdomvolvolyz=vol*yz
111 91 110 ax-mp volyz=vol*yz
112 ioossre yz
113 ovolcl yzvol*yz*
114 112 113 mp1i φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dvol*yz*
115 84 simp1d φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dz
116 76 simp1d φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dy
117 115 116 resubcld φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzy
118 117 rexrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzy*
119 simprr φe+d+d+
120 119 ad2antrr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dd+
121 120 rpxrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dd*
122 ioossicc yzyz
123 iccssre yzyz
124 116 115 123 syl2anc φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyz
125 ovolss yzyzyzvol*yzvol*yz
126 122 124 125 sylancr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dvol*yzvol*yz
127 simprl3 φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyz
128 ovolicc yzyzvol*yz=zy
129 116 115 127 128 syl3anc φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dvol*yz=zy
130 126 129 breqtrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dvol*yzzy
131 116 115 127 abssubge0d φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzy=zy
132 simprr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzy<d
133 131 132 eqbrtrrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dzy<d
134 114 118 121 130 133 xrlelttrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dvol*yz<d
135 111 134 eqbrtrid φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dvolyz<d
136 sseq1 u=yzuDyzD
137 fveq2 u=yzvolu=volyz
138 137 breq1d u=yzvolu<dvolyz<d
139 136 138 anbi12d u=yzuDvolu<dyzDvolyz<d
140 2fveq3 w=tFw=Ft
141 140 cbvitgv uFwdw=uFtdt
142 itgeq1 u=yzuFtdt=yzFtdt
143 141 142 eqtrid u=yzuFwdw=yzFtdt
144 143 breq1d u=yzuFwdw<eyzFtdt<e
145 139 144 imbi12d u=yzuDvolu<duFwdw<eyzDvolyz<dyzFtdt<e
146 simplr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dudomvoluDvolu<duFwdw<e
147 145 146 92 rspcdva φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzDvolyz<dyzFtdt<e
148 90 135 147 mp2and φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzFtdt<e
149 99 105 108 109 148 lelttrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dyzFtdt<e
150 68 149 eqbrtrd φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dGzGy<e
151 150 expr φe+d+udomvoluDvolu<duFwdw<eyABzAByzzy<dGzGy<e
152 25 35 38 53 151 wlogle φe+d+udomvoluDvolu<duFwdw<eyABzABzy<dGzGy<e
153 152 ralrimivva φe+d+udomvoluDvolu<duFwdw<eyABzABzy<dGzGy<e
154 153 ex φe+d+udomvoluDvolu<duFwdw<eyABzABzy<dGzGy<e
155 154 anassrs φe+d+udomvoluDvolu<duFwdw<eyABzABzy<dGzGy<e
156 155 reximdva φe+d+udomvoluDvolu<duFwdw<ed+yABzABzy<dGzGy<e
157 15 156 mpd φe+d+yABzABzy<dGzGy<e
158 r19.12 d+yABzABzy<dGzGy<eyABd+zABzy<dGzGy<e
159 157 158 syl φe+yABd+zABzy<dGzGy<e
160 159 ralrimiva φe+yABd+zABzy<dGzGy<e
161 ralcom e+yABd+zABzy<dGzGy<eyABe+d+zABzy<dGzGy<e
162 160 161 sylib φyABe+d+zABzy<dGzGy<e
163 ax-resscn
164 37 163 sstrdi φAB
165 ssid
166 elcncf2 ABG:ABcnG:AByABe+d+zABzy<dGzGy<e
167 164 165 166 sylancl φG:ABcnG:AByABe+d+zABzy<dGzGy<e
168 9 162 167 mpbir2and φG:ABcn