Metamath Proof Explorer


Theorem ghmcnp

Description: A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015)

Ref Expression
Hypotheses ghmcnp.x X=BaseG
ghmcnp.j J=TopOpenG
ghmcnp.k K=TopOpenH
Assertion ghmcnp GTopMndHTopMndFGGrpHomHFJCnPKAAXFJCnK

Proof

Step Hyp Ref Expression
1 ghmcnp.x X=BaseG
2 ghmcnp.j J=TopOpenG
3 ghmcnp.k K=TopOpenH
4 eqid J=J
5 4 cnprcl FJCnPKAAJ
6 5 a1i GTopMndHTopMndFGGrpHomHFJCnPKAAJ
7 2 1 tmdtopon GTopMndJTopOnX
8 7 3ad2ant1 GTopMndHTopMndFGGrpHomHJTopOnX
9 8 adantr GTopMndHTopMndFGGrpHomHFJCnPKAJTopOnX
10 simpl2 GTopMndHTopMndFGGrpHomHFJCnPKAHTopMnd
11 eqid BaseH=BaseH
12 3 11 tmdtopon HTopMndKTopOnBaseH
13 10 12 syl GTopMndHTopMndFGGrpHomHFJCnPKAKTopOnBaseH
14 simpr GTopMndHTopMndFGGrpHomHFJCnPKAFJCnPKA
15 cnpf2 JTopOnXKTopOnBaseHFJCnPKAF:XBaseH
16 9 13 14 15 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAF:XBaseH
17 16 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXF:XBaseH
18 14 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFJCnPKA
19 eqid wBaseHFx-GA+Hw=wBaseHFx-GA+Hw
20 19 mptpreima wBaseHFx-GA+Hw-1y=wBaseH|Fx-GA+Hwy
21 10 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyHTopMnd
22 16 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyF:XBaseH
23 simpll3 GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFGGrpHomH
24 ghmgrp1 FGGrpHomHGGrp
25 23 24 syl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyGGrp
26 simprl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyxX
27 5 adantl GTopMndHTopMndFGGrpHomHFJCnPKAAJ
28 toponuni JTopOnXX=J
29 9 28 syl GTopMndHTopMndFGGrpHomHFJCnPKAX=J
30 27 29 eleqtrrd GTopMndHTopMndFGGrpHomHFJCnPKAAX
31 30 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyAX
32 eqid -G=-G
33 1 32 grpsubcl GGrpxXAXx-GAX
34 25 26 31 33 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyx-GAX
35 22 34 ffvelcdmd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFx-GABaseH
36 eqid +H=+H
37 19 11 36 3 tmdlactcn HTopMndFx-GABaseHwBaseHFx-GA+HwKCnK
38 21 35 37 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywBaseHFx-GA+HwKCnK
39 simprrl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyyK
40 cnima wBaseHFx-GA+HwKCnKyKwBaseHFx-GA+Hw-1yK
41 38 39 40 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywBaseHFx-GA+Hw-1yK
42 20 41 eqeltrrid GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywBaseH|Fx-GA+HwyK
43 oveq2 w=FAFx-GA+Hw=Fx-GA+HFA
44 43 eleq1d w=FAFx-GA+HwyFx-GA+HFAy
45 22 31 ffvelcdmd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFABaseH
46 eqid -H=-H
47 1 32 46 ghmsub FGGrpHomHxXAXFx-GA=Fx-HFA
48 23 26 31 47 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFx-GA=Fx-HFA
49 48 oveq1d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFx-GA+HFA=Fx-HFA+HFA
50 ghmgrp2 FGGrpHomHHGrp
51 23 50 syl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyHGrp
52 22 26 ffvelcdmd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFxBaseH
53 11 36 46 grpnpcan HGrpFxBaseHFABaseHFx-HFA+HFA=Fx
54 51 52 45 53 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFx-HFA+HFA=Fx
55 49 54 eqtrd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFx-GA+HFA=Fx
56 simprrr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFxy
57 55 56 eqeltrd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFx-GA+HFAy
58 44 45 57 elrabd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyFAwBaseH|Fx-GA+Hwy
59 cnpimaex FJCnPKAwBaseH|Fx-GA+HwyKFAwBaseH|Fx-GA+HwyzJAzFzwBaseH|Fx-GA+Hwy
60 18 42 58 59 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzFzwBaseH|Fx-GA+Hwy
61 ssrab FzwBaseH|Fx-GA+HwyFzBaseHwFzFx-GA+Hwy
62 61 simprbi FzwBaseH|Fx-GA+HwywFzFx-GA+Hwy
63 22 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJF:XBaseH
64 63 ffnd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJFFnX
65 9 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyJTopOnX
66 toponss JTopOnXzJzX
67 65 66 sylan GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJzX
68 oveq2 w=FvFx-GA+Hw=Fx-GA+HFv
69 68 eleq1d w=FvFx-GA+HwyFx-GA+HFvy
70 69 ralima FFnXzXwFzFx-GA+HwyvzFx-GA+HFvy
71 64 67 70 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJwFzFx-GA+HwyvzFx-GA+HFvy
72 62 71 imbitrid GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJFzwBaseH|Fx-GA+HwyvzFx-GA+HFvy
73 eqid wXA-Gx+Gw=wXA-Gx+Gw
74 73 mptpreima wXA-Gx+Gw-1z=wX|A-Gx+Gwz
75 simpl1 GTopMndHTopMndFGGrpHomHFJCnPKAGTopMnd
76 75 ad2antrr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyGTopMnd
77 25 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyGGrp
78 31 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyAX
79 26 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyxX
80 1 32 grpsubcl GGrpAXxXA-GxX
81 77 78 79 80 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyA-GxX
82 eqid +G=+G
83 73 1 82 2 tmdlactcn GTopMndA-GxXwXA-Gx+GwJCnJ
84 76 81 83 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXA-Gx+GwJCnJ
85 simprl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyzJ
86 cnima wXA-Gx+GwJCnJzJwXA-Gx+Gw-1zJ
87 84 85 86 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXA-Gx+Gw-1zJ
88 74 87 eqeltrrid GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywX|A-Gx+GwzJ
89 oveq2 w=xA-Gx+Gw=A-Gx+Gx
90 89 eleq1d w=xA-Gx+GwzA-Gx+Gxz
91 1 82 32 grpnpcan GGrpAXxXA-Gx+Gx=A
92 77 78 79 91 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyA-Gx+Gx=A
93 simprrl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyAz
94 92 93 eqeltrd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyA-Gx+Gxz
95 90 79 94 elrabd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyxwX|A-Gx+Gwz
96 simprrr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyvzFx-GA+HFvy
97 fveq2 v=A-Gx+GwFv=FA-Gx+Gw
98 97 oveq2d v=A-Gx+GwFx-GA+HFv=Fx-GA+HFA-Gx+Gw
99 98 eleq1d v=A-Gx+GwFx-GA+HFvyFx-GA+HFA-Gx+Gwy
100 99 rspccv vzFx-GA+HFvyA-Gx+GwzFx-GA+HFA-Gx+Gwy
101 96 100 syl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyA-Gx+GwzFx-GA+HFA-Gx+Gwy
102 101 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXA-Gx+GwzFx-GA+HFA-Gx+Gwy
103 23 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXFGGrpHomH
104 34 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GAX
105 103 24 syl GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXGGrp
106 31 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXAX
107 26 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXxX
108 105 106 107 80 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXA-GxX
109 simpr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXwX
110 1 82 grpcl GGrpA-GxXwXA-Gx+GwX
111 105 108 109 110 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXA-Gx+GwX
112 1 82 36 ghmlin FGGrpHomHx-GAXA-Gx+GwXFx-GA+GA-Gx+Gw=Fx-GA+HFA-Gx+Gw
113 103 104 111 112 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXFx-GA+GA-Gx+Gw=Fx-GA+HFA-Gx+Gw
114 eqid invgG=invgG
115 1 32 114 grpinvsub GGrpxXAXinvgGx-GA=A-Gx
116 105 107 106 115 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXinvgGx-GA=A-Gx
117 116 oveq2d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GA+GinvgGx-GA=x-GA+GA-Gx
118 eqid 0G=0G
119 1 82 118 114 grprinv GGrpx-GAXx-GA+GinvgGx-GA=0G
120 105 104 119 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GA+GinvgGx-GA=0G
121 117 120 eqtr3d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GA+GA-Gx=0G
122 121 oveq1d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GA+GA-Gx+Gw=0G+Gw
123 1 82 grpass GGrpx-GAXA-GxXwXx-GA+GA-Gx+Gw=x-GA+GA-Gx+Gw
124 105 104 108 109 123 syl13anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GA+GA-Gx+Gw=x-GA+GA-Gx+Gw
125 1 82 118 grplid GGrpwX0G+Gw=w
126 105 109 125 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywX0G+Gw=w
127 122 124 126 3eqtr3d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXx-GA+GA-Gx+Gw=w
128 127 fveq2d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXFx-GA+GA-Gx+Gw=Fw
129 113 128 eqtr3d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxywXFx-GA+HFA-Gx+Gw=Fw
130 129 adantlr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXFx-GA+HFA-Gx+Gw=Fw
131 130 eleq1d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXFx-GA+HFA-Gx+GwyFwy
132 102 131 sylibd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXA-Gx+GwzFwy
133 132 ralrimiva GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywXA-Gx+GwzFwy
134 fveq2 v=wFv=Fw
135 134 eleq1d v=wFvyFwy
136 135 ralrab2 vwX|A-Gx+GwzFvywXA-Gx+GwzFwy
137 133 136 sylibr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyvwX|A-Gx+GwzFvy
138 22 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyF:XBaseH
139 138 ffund GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyFunF
140 ssrab2 wX|A-Gx+GwzX
141 138 fdmd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvydomF=X
142 140 141 sseqtrrid GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvywX|A-Gx+GwzdomF
143 funimass4 FunFwX|A-Gx+GwzdomFFwX|A-Gx+GwzyvwX|A-Gx+GwzFvy
144 139 142 143 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyFwX|A-Gx+GwzyvwX|A-Gx+GwzFvy
145 137 144 mpbird GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyFwX|A-Gx+Gwzy
146 eleq2 u=wX|A-Gx+GwzxuxwX|A-Gx+Gwz
147 imaeq2 u=wX|A-Gx+GwzFu=FwX|A-Gx+Gwz
148 147 sseq1d u=wX|A-Gx+GwzFuyFwX|A-Gx+Gwzy
149 146 148 anbi12d u=wX|A-Gx+GwzxuFuyxwX|A-Gx+GwzFwX|A-Gx+Gwzy
150 149 rspcev wX|A-Gx+GwzJxwX|A-Gx+GwzFwX|A-Gx+GwzyuJxuFuy
151 88 95 145 150 syl12anc GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyuJxuFuy
152 151 expr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzvzFx-GA+HFvyuJxuFuy
153 72 152 sylan2d GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzFzwBaseH|Fx-GA+HwyuJxuFuy
154 153 rexlimdva GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyzJAzFzwBaseH|Fx-GA+HwyuJxuFuy
155 60 154 mpd GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyuJxuFuy
156 155 anassrs GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyuJxuFuy
157 156 expr GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyuJxuFuy
158 157 ralrimiva GTopMndHTopMndFGGrpHomHFJCnPKAxXyKFxyuJxuFuy
159 9 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXJTopOnX
160 13 adantr GTopMndHTopMndFGGrpHomHFJCnPKAxXKTopOnBaseH
161 simpr GTopMndHTopMndFGGrpHomHFJCnPKAxXxX
162 iscnp JTopOnXKTopOnBaseHxXFJCnPKxF:XBaseHyKFxyuJxuFuy
163 159 160 161 162 syl3anc GTopMndHTopMndFGGrpHomHFJCnPKAxXFJCnPKxF:XBaseHyKFxyuJxuFuy
164 17 158 163 mpbir2and GTopMndHTopMndFGGrpHomHFJCnPKAxXFJCnPKx
165 164 ralrimiva GTopMndHTopMndFGGrpHomHFJCnPKAxXFJCnPKx
166 cncnp JTopOnXKTopOnBaseHFJCnKF:XBaseHxXFJCnPKx
167 9 13 166 syl2anc GTopMndHTopMndFGGrpHomHFJCnPKAFJCnKF:XBaseHxXFJCnPKx
168 16 165 167 mpbir2and GTopMndHTopMndFGGrpHomHFJCnPKAFJCnK
169 168 ex GTopMndHTopMndFGGrpHomHFJCnPKAFJCnK
170 6 169 jcad GTopMndHTopMndFGGrpHomHFJCnPKAAJFJCnK
171 4 cncnpi FJCnKAJFJCnPKA
172 171 ancoms AJFJCnKFJCnPKA
173 170 172 impbid1 GTopMndHTopMndFGGrpHomHFJCnPKAAJFJCnK
174 8 28 syl GTopMndHTopMndFGGrpHomHX=J
175 174 eleq2d GTopMndHTopMndFGGrpHomHAXAJ
176 175 anbi1d GTopMndHTopMndFGGrpHomHAXFJCnKAJFJCnK
177 173 176 bitr4d GTopMndHTopMndFGGrpHomHFJCnPKAAXFJCnK