Metamath Proof Explorer


Theorem lindsadd

Description: In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023)

Ref Expression
Assertion lindsadd W LVec F LIndS W X Base W LSpan W F F X LIndS W

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 1 linds1 F LIndS W F Base W
3 eldifi X Base W LSpan W F X Base W
4 3 snssd X Base W LSpan W F X Base W
5 unss F Base W X Base W F X Base W
6 5 biimpi F Base W X Base W F X Base W
7 2 4 6 syl2an F LIndS W X Base W LSpan W F F X Base W
8 7 3adant1 W LVec F LIndS W X Base W LSpan W F F X Base W
9 eldifn X Base W LSpan W F ¬ X LSpan W F
10 9 3ad2ant3 W LVec F LIndS W X Base W LSpan W F ¬ X LSpan W F
11 10 adantr W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W ¬ X LSpan W F
12 simpll1 W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X W LVec
13 2 ssdifssd F LIndS W F x Base W
14 13 3ad2ant2 W LVec F LIndS W X Base W LSpan W F F x Base W
15 14 ad2antrr W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X F x Base W
16 3 3ad2ant3 W LVec F LIndS W X Base W LSpan W F X Base W
17 16 ad2antrr W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X X Base W
18 simpr W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X x LSpan W F x X
19 lveclmod W LVec W LMod
20 19 ad2antrr W LVec F LIndS W x F k Base Scalar W 0 Scalar W W LMod
21 eqid Scalar W = Scalar W
22 21 lmodring W LMod Scalar W Ring
23 19 22 syl W LVec Scalar W Ring
24 eqid 0 Scalar W = 0 Scalar W
25 eqid Base Scalar W = Base Scalar W
26 24 25 ringelnzr Scalar W Ring k Base Scalar W 0 Scalar W Scalar W NzRing
27 23 26 sylan W LVec k Base Scalar W 0 Scalar W Scalar W NzRing
28 27 ad2ant2rl W LVec F LIndS W x F k Base Scalar W 0 Scalar W Scalar W NzRing
29 simplr W LVec F LIndS W x F k Base Scalar W 0 Scalar W F LIndS W
30 simprl W LVec F LIndS W x F k Base Scalar W 0 Scalar W x F
31 eqid LSpan W = LSpan W
32 31 21 lindsind2 W LMod Scalar W NzRing F LIndS W x F ¬ x LSpan W F x
33 20 28 29 30 32 syl211anc W LVec F LIndS W x F k Base Scalar W 0 Scalar W ¬ x LSpan W F x
34 33 3adantl3 W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W ¬ x LSpan W F x
35 34 adantr W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X ¬ x LSpan W F x
36 18 35 eldifd W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X x LSpan W F x X LSpan W F x
37 eqid LSubSp W = LSubSp W
38 1 37 31 lspsolv W LVec F x Base W X Base W x LSpan W F x X LSpan W F x X LSpan W F x x
39 12 15 17 36 38 syl13anc W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X X LSpan W F x x
40 39 ex W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X X LSpan W F x x
41 eldif X Base W LSpan W F X Base W ¬ X LSpan W F
42 snssi X F X F
43 1 31 lspss W LMod F Base W X F LSpan W X LSpan W F
44 19 2 42 43 syl3an W LVec F LIndS W X F LSpan W X LSpan W F
45 44 ad4ant124 W LVec F LIndS W X Base W X F LSpan W X LSpan W F
46 1 31 lspsnid W LMod X Base W X LSpan W X
47 19 46 sylan W LVec X Base W X LSpan W X
48 47 ad4ant13 W LVec F LIndS W X Base W X F X LSpan W X
49 45 48 sseldd W LVec F LIndS W X Base W X F X LSpan W F
50 49 ex W LVec F LIndS W X Base W X F X LSpan W F
51 50 con3d W LVec F LIndS W X Base W ¬ X LSpan W F ¬ X F
52 51 expimpd W LVec F LIndS W X Base W ¬ X LSpan W F ¬ X F
53 52 3impia W LVec F LIndS W X Base W ¬ X LSpan W F ¬ X F
54 41 53 syl3an3b W LVec F LIndS W X Base W LSpan W F ¬ X F
55 eleq1 X = x X F x F
56 55 notbid X = x ¬ X F ¬ x F
57 54 56 syl5ibcom W LVec F LIndS W X Base W LSpan W F X = x ¬ x F
58 57 necon2ad W LVec F LIndS W X Base W LSpan W F x F X x
59 58 imp W LVec F LIndS W X Base W LSpan W F x F X x
60 disjsn2 X x X x =
61 59 60 syl W LVec F LIndS W X Base W LSpan W F x F X x =
62 disj3 X x = X = X x
63 61 62 sylib W LVec F LIndS W X Base W LSpan W F x F X = X x
64 63 uneq2d W LVec F LIndS W X Base W LSpan W F x F F x X = F x X x
65 difundir F X x = F x X x
66 64 65 eqtr4di W LVec F LIndS W X Base W LSpan W F x F F x X = F X x
67 66 fveq2d W LVec F LIndS W X Base W LSpan W F x F LSpan W F x X = LSpan W F X x
68 67 eleq2d W LVec F LIndS W X Base W LSpan W F x F x LSpan W F x X x LSpan W F X x
69 68 adantrr W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X x LSpan W F X x
70 simpl W LVec k Base Scalar W 0 Scalar W W LVec
71 eldifsn k Base Scalar W 0 Scalar W k Base Scalar W k 0 Scalar W
72 71 biimpi k Base Scalar W 0 Scalar W k Base Scalar W k 0 Scalar W
73 72 adantl W LVec k Base Scalar W 0 Scalar W k Base Scalar W k 0 Scalar W
74 2 sselda F LIndS W x F x Base W
75 eqid W = W
76 1 21 75 25 24 31 lspsnvs W LVec k Base Scalar W k 0 Scalar W x Base W LSpan W k W x = LSpan W x
77 70 73 74 76 syl2an3an W LVec k Base Scalar W 0 Scalar W F LIndS W x F LSpan W k W x = LSpan W x
78 77 an42s W LVec F LIndS W x F k Base Scalar W 0 Scalar W LSpan W k W x = LSpan W x
79 78 sseq1d W LVec F LIndS W x F k Base Scalar W 0 Scalar W LSpan W k W x LSpan W F X x LSpan W x LSpan W F X x
80 79 3adantl3 W LVec F LIndS W X Base W x F k Base Scalar W 0 Scalar W LSpan W k W x LSpan W F X x LSpan W x LSpan W F X x
81 eldifi k Base Scalar W 0 Scalar W k Base Scalar W
82 19 3ad2ant1 W LVec F LIndS W X Base W W LMod
83 82 adantr W LVec F LIndS W X Base W x F k Base Scalar W W LMod
84 snssi X Base W X Base W
85 2 84 6 syl2an F LIndS W X Base W F X Base W
86 85 ssdifssd F LIndS W X Base W F X x Base W
87 1 37 31 lspcl W LMod F X x Base W LSpan W F X x LSubSp W
88 19 86 87 syl2an W LVec F LIndS W X Base W LSpan W F X x LSubSp W
89 88 3impb W LVec F LIndS W X Base W LSpan W F X x LSubSp W
90 89 adantr W LVec F LIndS W X Base W x F k Base Scalar W LSpan W F X x LSubSp W
91 19 anim1i W LVec k Base Scalar W W LMod k Base Scalar W
92 1 21 75 25 lmodvscl W LMod k Base Scalar W x Base W k W x Base W
93 92 3expa W LMod k Base Scalar W x Base W k W x Base W
94 91 74 93 syl2an W LVec k Base Scalar W F LIndS W x F k W x Base W
95 94 an42s W LVec F LIndS W x F k Base Scalar W k W x Base W
96 95 3adantl3 W LVec F LIndS W X Base W x F k Base Scalar W k W x Base W
97 1 37 31 83 90 96 lspsnel5 W LVec F LIndS W X Base W x F k Base Scalar W k W x LSpan W F X x LSpan W k W x LSpan W F X x
98 81 97 sylanr2 W LVec F LIndS W X Base W x F k Base Scalar W 0 Scalar W k W x LSpan W F X x LSpan W k W x LSpan W F X x
99 82 adantr W LVec F LIndS W X Base W x F W LMod
100 89 adantr W LVec F LIndS W X Base W x F LSpan W F X x LSubSp W
101 74 3ad2antl2 W LVec F LIndS W X Base W x F x Base W
102 1 37 31 99 100 101 lspsnel5 W LVec F LIndS W X Base W x F x LSpan W F X x LSpan W x LSpan W F X x
103 102 adantrr W LVec F LIndS W X Base W x F k Base Scalar W 0 Scalar W x LSpan W F X x LSpan W x LSpan W F X x
104 80 98 103 3bitr4rd W LVec F LIndS W X Base W x F k Base Scalar W 0 Scalar W x LSpan W F X x k W x LSpan W F X x
105 3 104 syl3anl3 W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F X x k W x LSpan W F X x
106 69 105 bitrd W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W x LSpan W F x X k W x LSpan W F X x
107 difsnid x F F x x = F
108 107 fveq2d x F LSpan W F x x = LSpan W F
109 108 eleq2d x F X LSpan W F x x X LSpan W F
110 109 ad2antrl W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W X LSpan W F x x X LSpan W F
111 40 106 110 3imtr3d W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W k W x LSpan W F X x X LSpan W F
112 11 111 mtod W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
113 112 ralrimivva W LVec F LIndS W X Base W LSpan W F x F k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
114 10 adantr W LVec F LIndS W X Base W LSpan W F k Base Scalar W 0 Scalar W ¬ X LSpan W F
115 difsn ¬ X F F X = F
116 54 115 syl W LVec F LIndS W X Base W LSpan W F F X = F
117 116 fveq2d W LVec F LIndS W X Base W LSpan W F LSpan W F X = LSpan W F
118 117 eleq2d W LVec F LIndS W X Base W LSpan W F k W X LSpan W F X k W X LSpan W F
119 118 adantr W LVec F LIndS W X Base W LSpan W F k Base Scalar W 0 Scalar W k W X LSpan W F X k W X LSpan W F
120 1 21 75 25 24 31 lspsnvs W LVec k Base Scalar W k 0 Scalar W X Base W LSpan W k W X = LSpan W X
121 120 3expa W LVec k Base Scalar W k 0 Scalar W X Base W LSpan W k W X = LSpan W X
122 121 an32s W LVec X Base W k Base Scalar W k 0 Scalar W LSpan W k W X = LSpan W X
123 71 122 sylan2b W LVec X Base W k Base Scalar W 0 Scalar W LSpan W k W X = LSpan W X
124 123 sseq1d W LVec X Base W k Base Scalar W 0 Scalar W LSpan W k W X LSpan W F LSpan W X LSpan W F
125 124 3adantl2 W LVec F LIndS W X Base W k Base Scalar W 0 Scalar W LSpan W k W X LSpan W F LSpan W X LSpan W F
126 82 adantr W LVec F LIndS W X Base W k Base Scalar W W LMod
127 1 37 31 lspcl W LMod F Base W LSpan W F LSubSp W
128 19 2 127 syl2an W LVec F LIndS W LSpan W F LSubSp W
129 128 3adant3 W LVec F LIndS W X Base W LSpan W F LSubSp W
130 129 adantr W LVec F LIndS W X Base W k Base Scalar W LSpan W F LSubSp W
131 1 21 75 25 lmodvscl W LMod k Base Scalar W X Base W k W X Base W
132 131 3expa W LMod k Base Scalar W X Base W k W X Base W
133 132 an32s W LMod X Base W k Base Scalar W k W X Base W
134 19 133 sylanl1 W LVec X Base W k Base Scalar W k W X Base W
135 134 3adantl2 W LVec F LIndS W X Base W k Base Scalar W k W X Base W
136 1 37 31 126 130 135 lspsnel5 W LVec F LIndS W X Base W k Base Scalar W k W X LSpan W F LSpan W k W X LSpan W F
137 81 136 sylan2 W LVec F LIndS W X Base W k Base Scalar W 0 Scalar W k W X LSpan W F LSpan W k W X LSpan W F
138 simp3 W LVec F LIndS W X Base W X Base W
139 1 37 31 82 129 138 lspsnel5 W LVec F LIndS W X Base W X LSpan W F LSpan W X LSpan W F
140 139 adantr W LVec F LIndS W X Base W k Base Scalar W 0 Scalar W X LSpan W F LSpan W X LSpan W F
141 125 137 140 3bitr4d W LVec F LIndS W X Base W k Base Scalar W 0 Scalar W k W X LSpan W F X LSpan W F
142 3 141 syl3anl3 W LVec F LIndS W X Base W LSpan W F k Base Scalar W 0 Scalar W k W X LSpan W F X LSpan W F
143 119 142 bitrd W LVec F LIndS W X Base W LSpan W F k Base Scalar W 0 Scalar W k W X LSpan W F X X LSpan W F
144 114 143 mtbird W LVec F LIndS W X Base W LSpan W F k Base Scalar W 0 Scalar W ¬ k W X LSpan W F X
145 144 ralrimiva W LVec F LIndS W X Base W LSpan W F k Base Scalar W 0 Scalar W ¬ k W X LSpan W F X
146 oveq2 x = X k W x = k W X
147 sneq x = X x = X
148 147 difeq2d x = X F X x = F X X
149 difun2 F X X = F X
150 148 149 eqtrdi x = X F X x = F X
151 150 fveq2d x = X LSpan W F X x = LSpan W F X
152 146 151 eleq12d x = X k W x LSpan W F X x k W X LSpan W F X
153 152 notbid x = X ¬ k W x LSpan W F X x ¬ k W X LSpan W F X
154 153 ralbidv x = X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x k Base Scalar W 0 Scalar W ¬ k W X LSpan W F X
155 154 ralsng X Base W LSpan W F x X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x k Base Scalar W 0 Scalar W ¬ k W X LSpan W F X
156 155 3ad2ant3 W LVec F LIndS W X Base W LSpan W F x X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x k Base Scalar W 0 Scalar W ¬ k W X LSpan W F X
157 145 156 mpbird W LVec F LIndS W X Base W LSpan W F x X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
158 ralunb x F X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x x F k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x x X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
159 113 157 158 sylanbrc W LVec F LIndS W X Base W LSpan W F x F X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
160 1 75 31 21 25 24 islinds2 W LVec F X LIndS W F X Base W x F X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
161 160 3ad2ant1 W LVec F LIndS W X Base W LSpan W F F X LIndS W F X Base W x F X k Base Scalar W 0 Scalar W ¬ k W x LSpan W F X x
162 8 159 161 mpbir2and W LVec F LIndS W X Base W LSpan W F F X LIndS W