Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
linds1 |
|
3 |
|
eldifi |
|
4 |
3
|
snssd |
|
5 |
|
unss |
|
6 |
5
|
biimpi |
|
7 |
2 4 6
|
syl2an |
|
8 |
7
|
3adant1 |
|
9 |
|
eldifn |
|
10 |
9
|
3ad2ant3 |
|
11 |
10
|
adantr |
|
12 |
|
simpll1 |
|
13 |
2
|
ssdifssd |
|
14 |
13
|
3ad2ant2 |
|
15 |
14
|
ad2antrr |
|
16 |
3
|
3ad2ant3 |
|
17 |
16
|
ad2antrr |
|
18 |
|
simpr |
|
19 |
|
lveclmod |
|
20 |
19
|
ad2antrr |
|
21 |
|
eqid |
|
22 |
21
|
lmodring |
|
23 |
19 22
|
syl |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
24 25
|
ringelnzr |
|
27 |
23 26
|
sylan |
|
28 |
27
|
ad2ant2rl |
|
29 |
|
simplr |
|
30 |
|
simprl |
|
31 |
|
eqid |
|
32 |
31 21
|
lindsind2 |
|
33 |
20 28 29 30 32
|
syl211anc |
|
34 |
33
|
3adantl3 |
|
35 |
34
|
adantr |
|
36 |
18 35
|
eldifd |
|
37 |
|
eqid |
|
38 |
1 37 31
|
lspsolv |
|
39 |
12 15 17 36 38
|
syl13anc |
|
40 |
39
|
ex |
|
41 |
|
eldif |
|
42 |
|
snssi |
|
43 |
1 31
|
lspss |
|
44 |
19 2 42 43
|
syl3an |
|
45 |
44
|
ad4ant124 |
|
46 |
1 31
|
lspsnid |
|
47 |
19 46
|
sylan |
|
48 |
47
|
ad4ant13 |
|
49 |
45 48
|
sseldd |
|
50 |
49
|
ex |
|
51 |
50
|
con3d |
|
52 |
51
|
expimpd |
|
53 |
52
|
3impia |
|
54 |
41 53
|
syl3an3b |
|
55 |
|
eleq1 |
|
56 |
55
|
notbid |
|
57 |
54 56
|
syl5ibcom |
|
58 |
57
|
necon2ad |
|
59 |
58
|
imp |
|
60 |
|
disjsn2 |
|
61 |
59 60
|
syl |
|
62 |
|
disj3 |
|
63 |
61 62
|
sylib |
|
64 |
63
|
uneq2d |
|
65 |
|
difundir |
|
66 |
64 65
|
eqtr4di |
|
67 |
66
|
fveq2d |
|
68 |
67
|
eleq2d |
|
69 |
68
|
adantrr |
|
70 |
|
simpl |
|
71 |
|
eldifsn |
|
72 |
71
|
biimpi |
|
73 |
72
|
adantl |
|
74 |
2
|
sselda |
|
75 |
|
eqid |
|
76 |
1 21 75 25 24 31
|
lspsnvs |
|
77 |
70 73 74 76
|
syl2an3an |
|
78 |
77
|
an42s |
|
79 |
78
|
sseq1d |
|
80 |
79
|
3adantl3 |
|
81 |
|
eldifi |
|
82 |
19
|
3ad2ant1 |
|
83 |
82
|
adantr |
|
84 |
|
snssi |
|
85 |
2 84 6
|
syl2an |
|
86 |
85
|
ssdifssd |
|
87 |
1 37 31
|
lspcl |
|
88 |
19 86 87
|
syl2an |
|
89 |
88
|
3impb |
|
90 |
89
|
adantr |
|
91 |
19
|
anim1i |
|
92 |
1 21 75 25
|
lmodvscl |
|
93 |
92
|
3expa |
|
94 |
91 74 93
|
syl2an |
|
95 |
94
|
an42s |
|
96 |
95
|
3adantl3 |
|
97 |
1 37 31 83 90 96
|
lspsnel5 |
|
98 |
81 97
|
sylanr2 |
|
99 |
82
|
adantr |
|
100 |
89
|
adantr |
|
101 |
74
|
3ad2antl2 |
|
102 |
1 37 31 99 100 101
|
lspsnel5 |
|
103 |
102
|
adantrr |
|
104 |
80 98 103
|
3bitr4rd |
|
105 |
3 104
|
syl3anl3 |
|
106 |
69 105
|
bitrd |
|
107 |
|
difsnid |
|
108 |
107
|
fveq2d |
|
109 |
108
|
eleq2d |
|
110 |
109
|
ad2antrl |
|
111 |
40 106 110
|
3imtr3d |
|
112 |
11 111
|
mtod |
|
113 |
112
|
ralrimivva |
|
114 |
10
|
adantr |
|
115 |
|
difsn |
|
116 |
54 115
|
syl |
|
117 |
116
|
fveq2d |
|
118 |
117
|
eleq2d |
|
119 |
118
|
adantr |
|
120 |
1 21 75 25 24 31
|
lspsnvs |
|
121 |
120
|
3expa |
|
122 |
121
|
an32s |
|
123 |
71 122
|
sylan2b |
|
124 |
123
|
sseq1d |
|
125 |
124
|
3adantl2 |
|
126 |
82
|
adantr |
|
127 |
1 37 31
|
lspcl |
|
128 |
19 2 127
|
syl2an |
|
129 |
128
|
3adant3 |
|
130 |
129
|
adantr |
|
131 |
1 21 75 25
|
lmodvscl |
|
132 |
131
|
3expa |
|
133 |
132
|
an32s |
|
134 |
19 133
|
sylanl1 |
|
135 |
134
|
3adantl2 |
|
136 |
1 37 31 126 130 135
|
lspsnel5 |
|
137 |
81 136
|
sylan2 |
|
138 |
|
simp3 |
|
139 |
1 37 31 82 129 138
|
lspsnel5 |
|
140 |
139
|
adantr |
|
141 |
125 137 140
|
3bitr4d |
|
142 |
3 141
|
syl3anl3 |
|
143 |
119 142
|
bitrd |
|
144 |
114 143
|
mtbird |
|
145 |
144
|
ralrimiva |
|
146 |
|
oveq2 |
|
147 |
|
sneq |
|
148 |
147
|
difeq2d |
|
149 |
|
difun2 |
|
150 |
148 149
|
eqtrdi |
|
151 |
150
|
fveq2d |
|
152 |
146 151
|
eleq12d |
|
153 |
152
|
notbid |
|
154 |
153
|
ralbidv |
|
155 |
154
|
ralsng |
|
156 |
155
|
3ad2ant3 |
|
157 |
145 156
|
mpbird |
|
158 |
|
ralunb |
|
159 |
113 157 158
|
sylanbrc |
|
160 |
1 75 31 21 25 24
|
islinds2 |
|
161 |
160
|
3ad2ant1 |
|
162 |
8 159 161
|
mpbir2and |
|