Metamath Proof Explorer


Theorem lspsolvlem

Description: Lemma for lspsolv . (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses lspsolv.v V=BaseW
lspsolv.s S=LSubSpW
lspsolv.n N=LSpanW
lspsolv.f F=ScalarW
lspsolv.b B=BaseF
lspsolv.p +˙=+W
lspsolv.t ·˙=W
lspsolv.q Q=zV|rBz+˙r·˙YNA
lspsolv.w φWLMod
lspsolv.ss φAV
lspsolv.y φYV
lspsolv.x φXNAY
Assertion lspsolvlem φrBX+˙r·˙YNA

Proof

Step Hyp Ref Expression
1 lspsolv.v V=BaseW
2 lspsolv.s S=LSubSpW
3 lspsolv.n N=LSpanW
4 lspsolv.f F=ScalarW
5 lspsolv.b B=BaseF
6 lspsolv.p +˙=+W
7 lspsolv.t ·˙=W
8 lspsolv.q Q=zV|rBz+˙r·˙YNA
9 lspsolv.w φWLMod
10 lspsolv.ss φAV
11 lspsolv.y φYV
12 lspsolv.x φXNAY
13 8 ssrab3 QV
14 13 a1i φQV
15 9 adantr φzAWLMod
16 eqid 0F=0F
17 4 5 16 lmod0cl WLMod0FB
18 15 17 syl φzA0FB
19 eqid 0W=0W
20 1 4 7 16 19 lmod0vs WLModYV0F·˙Y=0W
21 9 11 20 syl2anc φ0F·˙Y=0W
22 21 adantr φzA0F·˙Y=0W
23 22 oveq2d φzAz+˙0F·˙Y=z+˙0W
24 10 sselda φzAzV
25 1 6 19 lmod0vrid WLModzVz+˙0W=z
26 15 24 25 syl2anc φzAz+˙0W=z
27 23 26 eqtrd φzAz+˙0F·˙Y=z
28 1 3 lspssid WLModAVANA
29 9 10 28 syl2anc φANA
30 29 sselda φzAzNA
31 27 30 eqeltrd φzAz+˙0F·˙YNA
32 oveq1 r=0Fr·˙Y=0F·˙Y
33 32 oveq2d r=0Fz+˙r·˙Y=z+˙0F·˙Y
34 33 eleq1d r=0Fz+˙r·˙YNAz+˙0F·˙YNA
35 34 rspcev 0FBz+˙0F·˙YNArBz+˙r·˙YNA
36 18 31 35 syl2anc φzArBz+˙r·˙YNA
37 10 36 ssrabdv φAzV|rBz+˙r·˙YNA
38 37 8 sseqtrrdi φAQ
39 4 lmodfgrp WLModFGrp
40 9 39 syl φFGrp
41 eqid 1F=1F
42 4 5 41 lmod1cl WLMod1FB
43 9 42 syl φ1FB
44 eqid invgF=invgF
45 5 44 grpinvcl FGrp1FBinvgF1FB
46 40 43 45 syl2anc φinvgF1FB
47 eqid invgW=invgW
48 1 47 4 7 41 44 lmodvneg1 WLModYVinvgF1F·˙Y=invgWY
49 9 11 48 syl2anc φinvgF1F·˙Y=invgWY
50 49 oveq2d φY+˙invgF1F·˙Y=Y+˙invgWY
51 lmodgrp WLModWGrp
52 9 51 syl φWGrp
53 1 6 19 47 grprinv WGrpYVY+˙invgWY=0W
54 52 11 53 syl2anc φY+˙invgWY=0W
55 50 54 eqtrd φY+˙invgF1F·˙Y=0W
56 1 2 3 lspcl WLModAVNAS
57 9 10 56 syl2anc φNAS
58 19 2 lss0cl WLModNAS0WNA
59 9 57 58 syl2anc φ0WNA
60 55 59 eqeltrd φY+˙invgF1F·˙YNA
61 oveq1 r=invgF1Fr·˙Y=invgF1F·˙Y
62 61 oveq2d r=invgF1FY+˙r·˙Y=Y+˙invgF1F·˙Y
63 62 eleq1d r=invgF1FY+˙r·˙YNAY+˙invgF1F·˙YNA
64 63 rspcev invgF1FBY+˙invgF1F·˙YNArBY+˙r·˙YNA
65 46 60 64 syl2anc φrBY+˙r·˙YNA
66 oveq1 z=Yz+˙r·˙Y=Y+˙r·˙Y
67 66 eleq1d z=Yz+˙r·˙YNAY+˙r·˙YNA
68 67 rexbidv z=YrBz+˙r·˙YNArBY+˙r·˙YNA
69 68 8 elrab2 YQYVrBY+˙r·˙YNA
70 11 65 69 sylanbrc φYQ
71 70 snssd φYQ
72 38 71 unssd φAYQ
73 1 3 lspss WLModQVAYQNAYNQ
74 9 14 72 73 syl3anc φNAYNQ
75 4 a1i φF=ScalarW
76 5 a1i φB=BaseF
77 1 a1i φV=BaseW
78 6 a1i φ+˙=+W
79 7 a1i φ·˙=W
80 2 a1i φS=LSubSpW
81 70 ne0d φQ
82 oveq1 z=xz+˙r·˙Y=x+˙r·˙Y
83 82 eleq1d z=xz+˙r·˙YNAx+˙r·˙YNA
84 83 rexbidv z=xrBz+˙r·˙YNArBx+˙r·˙YNA
85 oveq1 r=sr·˙Y=s·˙Y
86 85 oveq2d r=sx+˙r·˙Y=x+˙s·˙Y
87 86 eleq1d r=sx+˙r·˙YNAx+˙s·˙YNA
88 87 cbvrexvw rBx+˙r·˙YNAsBx+˙s·˙YNA
89 84 88 bitrdi z=xrBz+˙r·˙YNAsBx+˙s·˙YNA
90 89 8 elrab2 xQxVsBx+˙s·˙YNA
91 oveq1 z=yz+˙r·˙Y=y+˙r·˙Y
92 91 eleq1d z=yz+˙r·˙YNAy+˙r·˙YNA
93 92 rexbidv z=yrBz+˙r·˙YNArBy+˙r·˙YNA
94 oveq1 r=tr·˙Y=t·˙Y
95 94 oveq2d r=ty+˙r·˙Y=y+˙t·˙Y
96 95 eleq1d r=ty+˙r·˙YNAy+˙t·˙YNA
97 96 cbvrexvw rBy+˙r·˙YNAtBy+˙t·˙YNA
98 93 97 bitrdi z=yrBz+˙r·˙YNAtBy+˙t·˙YNA
99 98 8 elrab2 yQyVtBy+˙t·˙YNA
100 90 99 anbi12i xQyQxVsBx+˙s·˙YNAyVtBy+˙t·˙YNA
101 an4 xVsBx+˙s·˙YNAyVtBy+˙t·˙YNAxVyVsBx+˙s·˙YNAtBy+˙t·˙YNA
102 100 101 bitri xQyQxVyVsBx+˙s·˙YNAtBy+˙t·˙YNA
103 reeanv sBtBx+˙s·˙YNAy+˙t·˙YNAsBx+˙s·˙YNAtBy+˙t·˙YNA
104 simp1ll φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAφ
105 104 9 syl φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAWLMod
106 simp1lr φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaB
107 simp1rl φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAxV
108 1 4 7 5 lmodvscl WLModaBxVa·˙xV
109 105 106 107 108 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙xV
110 simp1rr φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAyV
111 1 6 lmodvacl WLModa·˙xVyVa·˙x+˙yV
112 105 109 110 111 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙yV
113 simp2l φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAsB
114 eqid F=F
115 4 5 114 lmodmcl WLModaBsBaFsB
116 105 106 113 115 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaFsB
117 simp2r φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAtB
118 eqid +F=+F
119 4 5 118 lmodacl WLModaFsBtBaFs+FtB
120 105 116 117 119 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaFs+FtB
121 104 11 syl φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAYV
122 1 4 7 5 lmodvscl WLModsBYVs·˙YV
123 105 113 121 122 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAs·˙YV
124 1 4 7 5 lmodvscl WLModaBs·˙YVa·˙s·˙YV
125 105 106 123 124 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙s·˙YV
126 1 4 7 5 lmodvscl WLModtBYVt·˙YV
127 105 117 121 126 syl3anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAt·˙YV
128 1 6 lmod4 WLModa·˙xVyVa·˙s·˙YVt·˙YVa·˙x+˙y+˙a·˙s·˙Y+˙t·˙Y=a·˙x+˙a·˙s·˙Y+˙y+˙t·˙Y
129 105 109 110 125 127 128 syl122anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙y+˙a·˙s·˙Y+˙t·˙Y=a·˙x+˙a·˙s·˙Y+˙y+˙t·˙Y
130 1 6 4 7 5 118 lmodvsdir WLModaFsBtBYVaFs+Ft·˙Y=aFs·˙Y+˙t·˙Y
131 105 116 117 121 130 syl13anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaFs+Ft·˙Y=aFs·˙Y+˙t·˙Y
132 1 4 7 5 114 lmodvsass WLModaBsBYVaFs·˙Y=a·˙s·˙Y
133 105 106 113 121 132 syl13anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaFs·˙Y=a·˙s·˙Y
134 133 oveq1d φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaFs·˙Y+˙t·˙Y=a·˙s·˙Y+˙t·˙Y
135 131 134 eqtrd φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAaFs+Ft·˙Y=a·˙s·˙Y+˙t·˙Y
136 135 oveq2d φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙y+˙aFs+Ft·˙Y=a·˙x+˙y+˙a·˙s·˙Y+˙t·˙Y
137 1 6 4 7 5 lmodvsdi WLModaBxVs·˙YVa·˙x+˙s·˙Y=a·˙x+˙a·˙s·˙Y
138 105 106 107 123 137 syl13anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙s·˙Y=a·˙x+˙a·˙s·˙Y
139 138 oveq1d φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙s·˙Y+˙y+˙t·˙Y=a·˙x+˙a·˙s·˙Y+˙y+˙t·˙Y
140 129 136 139 3eqtr4d φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙y+˙aFs+Ft·˙Y=a·˙x+˙s·˙Y+˙y+˙t·˙Y
141 104 57 syl φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNANAS
142 simp3l φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAx+˙s·˙YNA
143 simp3r φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAy+˙t·˙YNA
144 4 5 6 7 2 lsscl NASaBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙s·˙Y+˙y+˙t·˙YNA
145 141 106 142 143 144 syl13anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙s·˙Y+˙y+˙t·˙YNA
146 140 145 eqeltrd φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙y+˙aFs+Ft·˙YNA
147 oveq1 r=aFs+Ftr·˙Y=aFs+Ft·˙Y
148 147 oveq2d r=aFs+Fta·˙x+˙y+˙r·˙Y=a·˙x+˙y+˙aFs+Ft·˙Y
149 148 eleq1d r=aFs+Fta·˙x+˙y+˙r·˙YNAa·˙x+˙y+˙aFs+Ft·˙YNA
150 149 rspcev aFs+FtBa·˙x+˙y+˙aFs+Ft·˙YNArBa·˙x+˙y+˙r·˙YNA
151 120 146 150 syl2anc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNArBa·˙x+˙y+˙r·˙YNA
152 oveq1 z=a·˙x+˙yz+˙r·˙Y=a·˙x+˙y+˙r·˙Y
153 152 eleq1d z=a·˙x+˙yz+˙r·˙YNAa·˙x+˙y+˙r·˙YNA
154 153 rexbidv z=a·˙x+˙yrBz+˙r·˙YNArBa·˙x+˙y+˙r·˙YNA
155 154 8 elrab2 a·˙x+˙yQa·˙x+˙yVrBa·˙x+˙y+˙r·˙YNA
156 112 151 155 sylanbrc φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙yQ
157 156 3exp φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙yQ
158 157 rexlimdvv φaBxVyVsBtBx+˙s·˙YNAy+˙t·˙YNAa·˙x+˙yQ
159 103 158 biimtrrid φaBxVyVsBx+˙s·˙YNAtBy+˙t·˙YNAa·˙x+˙yQ
160 159 expimpd φaBxVyVsBx+˙s·˙YNAtBy+˙t·˙YNAa·˙x+˙yQ
161 102 160 biimtrid φaBxQyQa·˙x+˙yQ
162 161 exp4b φaBxQyQa·˙x+˙yQ
163 162 3imp2 φaBxQyQa·˙x+˙yQ
164 75 76 77 78 79 80 14 81 163 islssd φQS
165 2 3 lspid WLModQSNQ=Q
166 9 164 165 syl2anc φNQ=Q
167 74 166 sseqtrd φNAYQ
168 167 12 sseldd φXQ
169 oveq1 z=Xz+˙r·˙Y=X+˙r·˙Y
170 169 eleq1d z=Xz+˙r·˙YNAX+˙r·˙YNA
171 170 rexbidv z=XrBz+˙r·˙YNArBX+˙r·˙YNA
172 171 8 elrab2 XQXVrBX+˙r·˙YNA
173 172 simprbi XQrBX+˙r·˙YNA
174 168 173 syl φrBX+˙r·˙YNA