Metamath Proof Explorer


Theorem mbfi1fseqlem6

Description: Lemma for mbfi1fseq . Verify that G converges pointwise to F , and wrap up the existential quantifier. (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φFMblFn
mbfi1fseq.2 φF:0+∞
mbfi1fseq.3 J=m,yFy2m2m
mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
Assertion mbfi1fseqlem6 φgg:dom1n0𝑝fgngnfgn+1xngnxFx

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φFMblFn
2 mbfi1fseq.2 φF:0+∞
3 mbfi1fseq.3 J=m,yFy2m2m
4 mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
5 1 2 3 4 mbfi1fseqlem4 φG:dom1
6 1 2 3 4 mbfi1fseqlem5 φn0𝑝fGnGnfGn+1
7 6 ralrimiva φn0𝑝fGnGnfGn+1
8 simpr φxx
9 8 recnd φxx
10 9 abscld φxx
11 2 ffvelcdmda φxFx0+∞
12 elrege0 Fx0+∞Fx0Fx
13 11 12 sylib φxFx0Fx
14 13 simpld φxFx
15 10 14 readdcld φxx+Fx
16 arch x+Fxkx+Fx<k
17 15 16 syl φxkx+Fx<k
18 eqid k=k
19 nnz kk
20 19 ad2antrl φxkx+Fx<kk
21 nnuz =1
22 1zzd φx1
23 halfcn 12
24 23 a1i φx12
25 halfre 12
26 halfge0 012
27 absid 1201212=12
28 25 26 27 mp2an 12=12
29 halflt1 12<1
30 28 29 eqbrtri 12<1
31 30 a1i φx12<1
32 24 31 expcnv φxn012n0
33 14 recnd φxFx
34 nnex V
35 34 mptex nFx12nV
36 35 a1i φxnFx12nV
37 nnnn0 jj0
38 37 adantl φxjj0
39 oveq2 n=j12n=12j
40 eqid n012n=n012n
41 ovex 12jV
42 39 40 41 fvmpt j0n012nj=12j
43 38 42 syl φxjn012nj=12j
44 expcl 12j012j
45 23 38 44 sylancr φxj12j
46 43 45 eqeltrd φxjn012nj
47 39 oveq2d n=jFx12n=Fx12j
48 eqid nFx12n=nFx12n
49 ovex Fx12jV
50 47 48 49 fvmpt jnFx12nj=Fx12j
51 50 adantl φxjnFx12nj=Fx12j
52 43 oveq2d φxjFxn012nj=Fx12j
53 51 52 eqtr4d φxjnFx12nj=Fxn012nj
54 21 22 32 33 36 46 53 climsubc2 φxnFx12nFx0
55 33 subid1d φxFx0=Fx
56 54 55 breqtrd φxnFx12nFx
57 56 adantr φxkx+Fx<knFx12nFx
58 34 mptex nGnxV
59 58 a1i φxkx+Fx<knGnxV
60 simprl φxkx+Fx<kk
61 eluznn kjkj
62 60 61 sylan φxkx+Fx<kjkj
63 62 50 syl φxkx+Fx<kjknFx12nj=Fx12j
64 14 ad2antrr φxkx+Fx<kjkFx
65 62 37 syl φxkx+Fx<kjkj0
66 reexpcl 12j012j
67 25 65 66 sylancr φxkx+Fx<kjk12j
68 64 67 resubcld φxkx+Fx<kjkFx12j
69 63 68 eqeltrd φxkx+Fx<kjknFx12nj
70 fveq2 n=jGn=Gj
71 70 fveq1d n=jGnx=Gjx
72 eqid nGnx=nGnx
73 fvex GjxV
74 71 72 73 fvmpt jnGnxj=Gjx
75 62 74 syl φxkx+Fx<kjknGnxj=Gjx
76 5 ad3antrrr φxkx+Fx<kjkG:dom1
77 76 62 ffvelcdmd φxkx+Fx<kjkGjdom1
78 i1ff Gjdom1Gj:
79 77 78 syl φxkx+Fx<kjkGj:
80 8 ad2antrr φxkx+Fx<kjkx
81 79 80 ffvelcdmd φxkx+Fx<kjkGjx
82 75 81 eqeltrd φxkx+Fx<kjknGnxj
83 33 ad2antrr φxkx+Fx<kjkFx
84 2nn 2
85 nnexpcl 2j02j
86 84 65 85 sylancr φxkx+Fx<kjk2j
87 86 nnred φxkx+Fx<kjk2j
88 87 recnd φxkx+Fx<kjk2j
89 86 nnne0d φxkx+Fx<kjk2j0
90 83 88 89 divcan4d φxkx+Fx<kjkFx2j2j=Fx
91 90 eqcomd φxkx+Fx<kjkFx=Fx2j2j
92 2cnd φxkx+Fx<kjk2
93 2ne0 20
94 93 a1i φxkx+Fx<kjk20
95 eluzelz jkj
96 95 adantl φxkx+Fx<kjkj
97 92 94 96 exprecd φxkx+Fx<kjk12j=12j
98 91 97 oveq12d φxkx+Fx<kjkFx12j=Fx2j2j12j
99 64 87 remulcld φxkx+Fx<kjkFx2j
100 99 recnd φxkx+Fx<kjkFx2j
101 1cnd φxkx+Fx<kjk1
102 100 101 88 89 divsubdird φxkx+Fx<kjkFx2j12j=Fx2j2j12j
103 98 102 eqtr4d φxkx+Fx<kjkFx12j=Fx2j12j
104 fllep1 Fx2jFx2jFx2j+1
105 99 104 syl φxkx+Fx<kjkFx2jFx2j+1
106 1red φxkx+Fx<kjk1
107 reflcl Fx2jFx2j
108 99 107 syl φxkx+Fx<kjkFx2j
109 99 106 108 lesubaddd φxkx+Fx<kjkFx2j1Fx2jFx2jFx2j+1
110 105 109 mpbird φxkx+Fx<kjkFx2j1Fx2j
111 peano2rem Fx2jFx2j1
112 99 111 syl φxkx+Fx<kjkFx2j1
113 86 nngt0d φxkx+Fx<kjk0<2j
114 lediv1 Fx2j1Fx2j2j0<2jFx2j1Fx2jFx2j12jFx2j2j
115 112 108 87 113 114 syl112anc φxkx+Fx<kjkFx2j1Fx2jFx2j12jFx2j2j
116 110 115 mpbid φxkx+Fx<kjkFx2j12jFx2j2j
117 103 116 eqbrtrd φxkx+Fx<kjkFx12jFx2j2j
118 1 2 3 4 mbfi1fseqlem2 jGj=xifxjjifjJxjjJxj0
119 62 118 syl φxkx+Fx<kjkGj=xifxjjifjJxjjJxj0
120 119 fveq1d φxkx+Fx<kjkGjx=xifxjjifjJxjjJxj0x
121 ovex jJxV
122 vex jV
123 121 122 ifex ifjJxjjJxjV
124 c0ex 0V
125 123 124 ifex ifxjjifjJxjjJxj0V
126 eqid xifxjjifjJxjjJxj0=xifxjjifjJxjjJxj0
127 126 fvmpt2 xifxjjifjJxjjJxj0VxifxjjifjJxjjJxj0x=ifxjjifjJxjjJxj0
128 80 125 127 sylancl φxkx+Fx<kjkxifxjjifjJxjjJxj0x=ifxjjifjJxjjJxj0
129 75 120 128 3eqtrd φxkx+Fx<kjknGnxj=ifxjjifjJxjjJxj0
130 10 ad2antrr φxkx+Fx<kjkx
131 15 ad2antrr φxkx+Fx<kjkx+Fx
132 62 nnred φxkx+Fx<kjkj
133 11 ad2antrr φxkx+Fx<kjkFx0+∞
134 133 12 sylib φxkx+Fx<kjkFx0Fx
135 134 simprd φxkx+Fx<kjk0Fx
136 130 64 addge01d φxkx+Fx<kjk0Fxxx+Fx
137 135 136 mpbid φxkx+Fx<kjkxx+Fx
138 60 adantr φxkx+Fx<kjkk
139 138 nnred φxkx+Fx<kjkk
140 simplrr φxkx+Fx<kjkx+Fx<k
141 131 139 140 ltled φxkx+Fx<kjkx+Fxk
142 eluzle jkkj
143 142 adantl φxkx+Fx<kjkkj
144 131 139 132 141 143 letrd φxkx+Fx<kjkx+Fxj
145 130 131 132 137 144 letrd φxkx+Fx<kjkxj
146 80 132 absled φxkx+Fx<kjkxjjxxj
147 145 146 mpbid φxkx+Fx<kjkjxxj
148 147 simpld φxkx+Fx<kjkjx
149 147 simprd φxkx+Fx<kjkxj
150 132 renegcld φxkx+Fx<kjkj
151 elicc2 jjxjjxjxxj
152 150 132 151 syl2anc φxkx+Fx<kjkxjjxjxxj
153 80 148 149 152 mpbir3and φxkx+Fx<kjkxjj
154 153 iftrued φxkx+Fx<kjkifxjjifjJxjjJxj0=ifjJxjjJxj
155 simpr m=jy=xy=x
156 155 fveq2d m=jy=xFy=Fx
157 simpl m=jy=xm=j
158 157 oveq2d m=jy=x2m=2j
159 156 158 oveq12d m=jy=xFy2m=Fx2j
160 159 fveq2d m=jy=xFy2m=Fx2j
161 160 158 oveq12d m=jy=xFy2m2m=Fx2j2j
162 ovex Fx2j2jV
163 161 3 162 ovmpoa jxjJx=Fx2j2j
164 62 80 163 syl2anc φxkx+Fx<kjkjJx=Fx2j2j
165 108 86 nndivred φxkx+Fx<kjkFx2j2j
166 flle Fx2jFx2jFx2j
167 99 166 syl φxkx+Fx<kjkFx2jFx2j
168 ledivmul2 Fx2jFx2j0<2jFx2j2jFxFx2jFx2j
169 108 64 87 113 168 syl112anc φxkx+Fx<kjkFx2j2jFxFx2jFx2j
170 167 169 mpbird φxkx+Fx<kjkFx2j2jFx
171 9 ad2antrr φxkx+Fx<kjkx
172 171 absge0d φxkx+Fx<kjk0x
173 64 130 addge02d φxkx+Fx<kjk0xFxx+Fx
174 172 173 mpbid φxkx+Fx<kjkFxx+Fx
175 64 131 132 174 144 letrd φxkx+Fx<kjkFxj
176 165 64 132 170 175 letrd φxkx+Fx<kjkFx2j2jj
177 164 176 eqbrtrd φxkx+Fx<kjkjJxj
178 177 iftrued φxkx+Fx<kjkifjJxjjJxj=jJx
179 178 164 eqtrd φxkx+Fx<kjkifjJxjjJxj=Fx2j2j
180 129 154 179 3eqtrd φxkx+Fx<kjknGnxj=Fx2j2j
181 117 63 180 3brtr4d φxkx+Fx<kjknFx12njnGnxj
182 180 170 eqbrtrd φxkx+Fx<kjknGnxjFx
183 18 20 57 59 69 82 181 182 climsqz φxkx+Fx<knGnxFx
184 17 183 rexlimddv φxnGnxFx
185 184 ralrimiva φxnGnxFx
186 34 mptex mxifxmmifmJxmmJxm0V
187 4 186 eqeltri GV
188 feq1 g=Gg:dom1G:dom1
189 fveq1 g=Ggn=Gn
190 189 breq2d g=G0𝑝fgn0𝑝fGn
191 fveq1 g=Ggn+1=Gn+1
192 189 191 breq12d g=Ggnfgn+1GnfGn+1
193 190 192 anbi12d g=G0𝑝fgngnfgn+10𝑝fGnGnfGn+1
194 193 ralbidv g=Gn0𝑝fgngnfgn+1n0𝑝fGnGnfGn+1
195 189 fveq1d g=Ggnx=Gnx
196 195 mpteq2dv g=Gngnx=nGnx
197 196 breq1d g=GngnxFxnGnxFx
198 197 ralbidv g=GxngnxFxxnGnxFx
199 188 194 198 3anbi123d g=Gg:dom1n0𝑝fgngnfgn+1xngnxFxG:dom1n0𝑝fGnGnfGn+1xnGnxFx
200 187 199 spcev G:dom1n0𝑝fGnGnfGn+1xnGnxFxgg:dom1n0𝑝fgngnfgn+1xngnxFx
201 5 7 185 200 syl3anc φgg:dom1n0𝑝fgngnfgn+1xngnxFx