Metamath Proof Explorer


Theorem mdegmullem

Description: Lemma for mdegmulle2 . (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y=ImPolyR
mdegaddle.d D=ImDegR
mdegaddle.i φIV
mdegaddle.r φRRing
mdegmulle2.b B=BaseY
mdegmulle2.t ·˙=Y
mdegmulle2.f φFB
mdegmulle2.g φGB
mdegmulle2.j1 φJ0
mdegmulle2.k1 φK0
mdegmulle2.j2 φDFJ
mdegmulle2.k2 φDGK
mdegmullem.a A=a0I|a-1Fin
mdegmullem.h H=bAfldb
Assertion mdegmullem φDF·˙GJ+K

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y=ImPolyR
2 mdegaddle.d D=ImDegR
3 mdegaddle.i φIV
4 mdegaddle.r φRRing
5 mdegmulle2.b B=BaseY
6 mdegmulle2.t ·˙=Y
7 mdegmulle2.f φFB
8 mdegmulle2.g φGB
9 mdegmulle2.j1 φJ0
10 mdegmulle2.k1 φK0
11 mdegmulle2.j2 φDFJ
12 mdegmulle2.k2 φDGK
13 mdegmullem.a A=a0I|a-1Fin
14 mdegmullem.h H=bAfldb
15 eqid R=R
16 1 5 15 6 13 7 8 mplmul φF·˙G=cARdeA|efcFdRGcfd
17 16 fveq1d φF·˙Gx=cARdeA|efcFdRGcfdx
18 17 adantr φxAJ+K<HxF·˙Gx=cARdeA|efcFdRGcfdx
19 breq2 c=xefcefx
20 19 rabbidv c=xeA|efc=eA|efx
21 fvoveq1 c=xGcfd=Gxfd
22 21 oveq2d c=xFdRGcfd=FdRGxfd
23 20 22 mpteq12dv c=xdeA|efcFdRGcfd=deA|efxFdRGxfd
24 23 oveq2d c=xRdeA|efcFdRGcfd=RdeA|efxFdRGxfd
25 eqid cARdeA|efcFdRGcfd=cARdeA|efcFdRGcfd
26 ovex RdeA|efxFdRGxfdV
27 24 25 26 fvmpt xAcARdeA|efcFdRGcfdx=RdeA|efxFdRGxfd
28 27 ad2antrl φxAJ+K<HxcARdeA|efcFdRGcfdx=RdeA|efxFdRGxfd
29 eqid 0R=0R
30 7 ad2antrr φxAJ+K<HxdeA|efxJ<HdFB
31 elrabi deA|efxdA
32 31 adantl φxAJ+K<HxdeA|efxdA
33 32 adantrr φxAJ+K<HxdeA|efxJ<HddA
34 2 1 5 mdegxrcl FBDF*
35 7 34 syl φDF*
36 35 ad2antrr φxAJ+K<HxdeA|efxDF*
37 nn0ssre 0
38 ressxr *
39 37 38 sstri 0*
40 39 9 sselid φJ*
41 40 ad2antrr φxAJ+K<HxdeA|efxJ*
42 13 14 tdeglem1 H:A0
43 42 a1i φxAJ+K<HxdeA|efxH:A0
44 43 32 ffvelcdmd φxAJ+K<HxdeA|efxHd0
45 39 44 sselid φxAJ+K<HxdeA|efxHd*
46 36 41 45 3jca φxAJ+K<HxdeA|efxDF*J*Hd*
47 46 adantrr φxAJ+K<HxdeA|efxJ<HdDF*J*Hd*
48 11 ad2antrr φxAJ+K<HxdeA|efxDFJ
49 48 anim1i φxAJ+K<HxdeA|efxJ<HdDFJJ<Hd
50 49 anasss φxAJ+K<HxdeA|efxJ<HdDFJJ<Hd
51 xrlelttr DF*J*Hd*DFJJ<HdDF<Hd
52 47 50 51 sylc φxAJ+K<HxdeA|efxJ<HdDF<Hd
53 2 1 5 29 13 14 30 33 52 mdeglt φxAJ+K<HxdeA|efxJ<HdFd=0R
54 53 oveq1d φxAJ+K<HxdeA|efxJ<HdFdRGxfd=0RRGxfd
55 4 ad2antrr φxAJ+K<HxdeA|efxRRing
56 eqid BaseR=BaseR
57 1 56 5 13 8 mplelf φG:ABaseR
58 57 ad2antrr φxAJ+K<HxdeA|efxG:ABaseR
59 ssrab2 eA|efxA
60 simplrl φxAJ+K<HxdeA|efxxA
61 eqid eA|efx=eA|efx
62 13 61 psrbagconcl xAdeA|efxxfdeA|efx
63 60 62 sylancom φxAJ+K<HxdeA|efxxfdeA|efx
64 59 63 sselid φxAJ+K<HxdeA|efxxfdA
65 58 64 ffvelcdmd φxAJ+K<HxdeA|efxGxfdBaseR
66 56 15 29 ringlz RRingGxfdBaseR0RRGxfd=0R
67 55 65 66 syl2anc φxAJ+K<HxdeA|efx0RRGxfd=0R
68 67 adantrr φxAJ+K<HxdeA|efxJ<Hd0RRGxfd=0R
69 54 68 eqtrd φxAJ+K<HxdeA|efxJ<HdFdRGxfd=0R
70 69 anassrs φxAJ+K<HxdeA|efxJ<HdFdRGxfd=0R
71 8 ad2antrr φxAJ+K<HxdeA|efxK<HxfdGB
72 64 adantrr φxAJ+K<HxdeA|efxK<HxfdxfdA
73 2 1 5 mdegxrcl GBDG*
74 8 73 syl φDG*
75 74 ad2antrr φxAJ+K<HxdeA|efxDG*
76 39 10 sselid φK*
77 76 ad2antrr φxAJ+K<HxdeA|efxK*
78 43 64 ffvelcdmd φxAJ+K<HxdeA|efxHxfd0
79 39 78 sselid φxAJ+K<HxdeA|efxHxfd*
80 75 77 79 3jca φxAJ+K<HxdeA|efxDG*K*Hxfd*
81 80 adantrr φxAJ+K<HxdeA|efxK<HxfdDG*K*Hxfd*
82 12 ad2antrr φxAJ+K<HxdeA|efxDGK
83 82 anim1i φxAJ+K<HxdeA|efxK<HxfdDGKK<Hxfd
84 83 anasss φxAJ+K<HxdeA|efxK<HxfdDGKK<Hxfd
85 xrlelttr DG*K*Hxfd*DGKK<HxfdDG<Hxfd
86 81 84 85 sylc φxAJ+K<HxdeA|efxK<HxfdDG<Hxfd
87 2 1 5 29 13 14 71 72 86 mdeglt φxAJ+K<HxdeA|efxK<HxfdGxfd=0R
88 87 oveq2d φxAJ+K<HxdeA|efxK<HxfdFdRGxfd=FdR0R
89 1 56 5 13 7 mplelf φF:ABaseR
90 89 ad2antrr φxAJ+K<HxdeA|efxF:ABaseR
91 90 32 ffvelcdmd φxAJ+K<HxdeA|efxFdBaseR
92 56 15 29 ringrz RRingFdBaseRFdR0R=0R
93 55 91 92 syl2anc φxAJ+K<HxdeA|efxFdR0R=0R
94 93 adantrr φxAJ+K<HxdeA|efxK<HxfdFdR0R=0R
95 88 94 eqtrd φxAJ+K<HxdeA|efxK<HxfdFdRGxfd=0R
96 95 anassrs φxAJ+K<HxdeA|efxK<HxfdFdRGxfd=0R
97 simplrr φxAJ+K<HxdeA|efxJ+K<Hx
98 44 nn0red φxAJ+K<HxdeA|efxHd
99 78 nn0red φxAJ+K<HxdeA|efxHxfd
100 9 ad2antrr φxAJ+K<HxdeA|efxJ0
101 100 nn0red φxAJ+K<HxdeA|efxJ
102 10 ad2antrr φxAJ+K<HxdeA|efxK0
103 102 nn0red φxAJ+K<HxdeA|efxK
104 le2add HdHxfdJKHdJHxfdKHd+HxfdJ+K
105 98 99 101 103 104 syl22anc φxAJ+K<HxdeA|efxHdJHxfdKHd+HxfdJ+K
106 13 14 tdeglem3 dAxfdAHd+fxfd=Hd+Hxfd
107 32 64 106 syl2anc φxAJ+K<HxdeA|efxHd+fxfd=Hd+Hxfd
108 3 ad2antrr φxAJ+K<HxdeA|efxIV
109 13 psrbagf dAd:I0
110 109 3ad2ant2 IVdAxAd:I0
111 110 ffvelcdmda IVdAxAbIdb0
112 111 nn0cnd IVdAxAbIdb
113 13 psrbagf xAx:I0
114 113 3ad2ant3 IVdAxAx:I0
115 114 ffvelcdmda IVdAxAbIxb0
116 115 nn0cnd IVdAxAbIxb
117 112 116 pncan3d IVdAxAbIdb+xb-db=xb
118 117 mpteq2dva IVdAxAbIdb+xb-db=bIxb
119 simp1 IVdAxAIV
120 fvexd IVdAxAbIdbV
121 ovexd IVdAxAbIxbdbV
122 110 feqmptd IVdAxAd=bIdb
123 fvexd IVdAxAbIxbV
124 114 feqmptd IVdAxAx=bIxb
125 119 123 120 124 122 offval2 IVdAxAxfd=bIxbdb
126 119 120 121 122 125 offval2 IVdAxAd+fxfd=bIdb+xb-db
127 118 126 124 3eqtr4d IVdAxAd+fxfd=x
128 108 32 60 127 syl3anc φxAJ+K<HxdeA|efxd+fxfd=x
129 128 fveq2d φxAJ+K<HxdeA|efxHd+fxfd=Hx
130 107 129 eqtr3d φxAJ+K<HxdeA|efxHd+Hxfd=Hx
131 130 breq1d φxAJ+K<HxdeA|efxHd+HxfdJ+KHxJ+K
132 105 131 sylibd φxAJ+K<HxdeA|efxHdJHxfdKHxJ+K
133 98 101 lenltd φxAJ+K<HxdeA|efxHdJ¬J<Hd
134 99 103 lenltd φxAJ+K<HxdeA|efxHxfdK¬K<Hxfd
135 133 134 anbi12d φxAJ+K<HxdeA|efxHdJHxfdK¬J<Hd¬K<Hxfd
136 ioran ¬J<HdK<Hxfd¬J<Hd¬K<Hxfd
137 135 136 bitr4di φxAJ+K<HxdeA|efxHdJHxfdK¬J<HdK<Hxfd
138 43 60 ffvelcdmd φxAJ+K<HxdeA|efxHx0
139 138 nn0red φxAJ+K<HxdeA|efxHx
140 9 10 nn0addcld φJ+K0
141 140 ad2antrr φxAJ+K<HxdeA|efxJ+K0
142 141 nn0red φxAJ+K<HxdeA|efxJ+K
143 139 142 lenltd φxAJ+K<HxdeA|efxHxJ+K¬J+K<Hx
144 132 137 143 3imtr3d φxAJ+K<HxdeA|efx¬J<HdK<Hxfd¬J+K<Hx
145 97 144 mt4d φxAJ+K<HxdeA|efxJ<HdK<Hxfd
146 70 96 145 mpjaodan φxAJ+K<HxdeA|efxFdRGxfd=0R
147 146 mpteq2dva φxAJ+K<HxdeA|efxFdRGxfd=deA|efx0R
148 147 oveq2d φxAJ+K<HxRdeA|efxFdRGxfd=RdeA|efx0R
149 ringmnd RRingRMnd
150 4 149 syl φRMnd
151 150 adantr φxAJ+K<HxRMnd
152 ovex 0IV
153 13 152 rab2ex eA|efxV
154 29 gsumz RMndeA|efxVRdeA|efx0R=0R
155 151 153 154 sylancl φxAJ+K<HxRdeA|efx0R=0R
156 148 155 eqtrd φxAJ+K<HxRdeA|efxFdRGxfd=0R
157 18 28 156 3eqtrd φxAJ+K<HxF·˙Gx=0R
158 157 expr φxAJ+K<HxF·˙Gx=0R
159 158 ralrimiva φxAJ+K<HxF·˙Gx=0R
160 1 mplring IVRRingYRing
161 3 4 160 syl2anc φYRing
162 5 6 ringcl YRingFBGBF·˙GB
163 161 7 8 162 syl3anc φF·˙GB
164 39 140 sselid φJ+K*
165 2 1 5 29 13 14 mdegleb F·˙GBJ+K*DF·˙GJ+KxAJ+K<HxF·˙Gx=0R
166 163 164 165 syl2anc φDF·˙GJ+KxAJ+K<HxF·˙Gx=0R
167 159 166 mpbird φDF·˙GJ+K