Metamath Proof Explorer


Theorem mnringmulrcld

Description: Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringmulrcld.2 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringmulrcld.3 B=BaseF
mnringmulrcld.1 A=BaseM
mnringmulrcld.4 ·˙=F
mnringmulrcld.5 φRRing
mnringmulrcld.6 φMU
mnringmulrcld.7 φXB
mnringmulrcld.8 φYB
Assertion mnringmulrcld φX·˙YB

Proof

Step Hyp Ref Expression
1 mnringmulrcld.2 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringmulrcld.3 B=BaseF
3 mnringmulrcld.1 A=BaseM
4 mnringmulrcld.4 ·˙=F
5 mnringmulrcld.5 φRRing
6 mnringmulrcld.6 φMU
7 mnringmulrcld.7 φXB
8 mnringmulrcld.8 φYB
9 eqid R=R
10 eqid 0R=0R
11 eqid +M=+M
12 1 2 9 10 3 11 4 5 6 7 8 mnringmulrvald φX·˙Y=FaA,bAiAifi=a+MbXaRYb0R
13 eqid 0F=0F
14 1 5 6 mnringlmodd φFLMod
15 lmodcmn FLModFCMnd
16 14 15 syl φFCMnd
17 3 fvexi AV
18 17 17 xpex A×AV
19 18 a1i φA×AV
20 5 3ad2ant1 φaAbARRing
21 eqid BaseR=BaseR
22 1 2 3 21 5 6 7 mnringbasefd φX:ABaseR
23 22 3ad2ant1 φaAbAX:ABaseR
24 simp2 φaAbAaA
25 23 24 ffvelcdmd φaAbAXaBaseR
26 1 2 3 21 5 6 8 mnringbasefd φY:ABaseR
27 26 3ad2ant1 φaAbAY:ABaseR
28 simp3 φaAbAbA
29 27 28 ffvelcdmd φaAbAYbBaseR
30 21 9 ringcl RRingXaBaseRYbBaseRXaRYbBaseR
31 20 25 29 30 syl3anc φaAbAXaRYbBaseR
32 21 10 ring0cl RRing0RBaseR
33 20 32 syl φaAbA0RBaseR
34 31 33 ifcld φaAbAifi=a+MbXaRYb0RBaseR
35 34 adantr φaAbAiAifi=a+MbXaRYb0RBaseR
36 35 fmpttd φaAbAiAifi=a+MbXaRYb0R:ABaseR
37 21 fvexi BaseRV
38 37 17 elmap iAifi=a+MbXaRYb0RBaseRAiAifi=a+MbXaRYb0R:ABaseR
39 36 38 sylibr φaAbAiAifi=a+MbXaRYb0RBaseRA
40 17 a1i φaAbAAV
41 eqid iAifi=a+MbXaRYb0R=iAifi=a+MbXaRYb0R
42 40 33 41 sniffsupp φaAbAfinSupp0RiAifi=a+MbXaRYb0R
43 39 42 jca φaAbAiAifi=a+MbXaRYb0RBaseRAfinSupp0RiAifi=a+MbXaRYb0R
44 6 3ad2ant1 φaAbAMU
45 1 2 3 21 10 20 44 mnringelbased φaAbAiAifi=a+MbXaRYb0RBiAifi=a+MbXaRYb0RBaseRAfinSupp0RiAifi=a+MbXaRYb0R
46 43 45 mpbird φaAbAiAifi=a+MbXaRYb0RB
47 46 3expb φaAbAiAifi=a+MbXaRYb0RB
48 47 ralrimivva φaAbAiAifi=a+MbXaRYb0RB
49 eqid aA,bAiAifi=a+MbXaRYb0R=aA,bAiAifi=a+MbXaRYb0R
50 49 fmpo aAbAiAifi=a+MbXaRYb0RBaA,bAiAifi=a+MbXaRYb0R:A×AB
51 48 50 sylib φaA,bAiAifi=a+MbXaRYb0R:A×AB
52 17 17 mpoex aA,bAiAifi=a+MbXaRYb0RV
53 52 a1i φaA,bAiAifi=a+MbXaRYb0RV
54 51 ffnd φaA,bAiAifi=a+MbXaRYb0RFnA×A
55 13 fvexi 0FV
56 55 a1i φ0FV
57 1 2 10 5 6 7 mnringbasefsuppd φfinSupp0RX
58 57 fsuppimpd φXsupp0RFin
59 1 2 10 5 6 8 mnringbasefsuppd φfinSupp0RY
60 59 fsuppimpd φYsupp0RFin
61 xpfi Xsupp0RFinYsupp0RFinsupp0RX×supp0RYFin
62 58 60 61 syl2anc φsupp0RX×supp0RYFin
63 elxpi pA×Aabp=abaAbA
64 simpl p=abaAbAp=ab
65 64 2eximi abp=abaAbAabp=ab
66 63 65 syl pA×Aabp=ab
67 66 adantl φpA×Aabp=ab
68 nfv aφpA×A
69 nfv apsupp0RX×supp0RY
70 nfmpo1 _aaA,bAiAifi=a+MbXaRYb0R
71 nfcv _ap
72 70 71 nffv _aaA,bAiAifi=a+MbXaRYb0Rp
73 nfcv _a0F
74 72 73 nfeq aaA,bAiAifi=a+MbXaRYb0Rp=0F
75 69 74 nfor apsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
76 nfv bφpA×A
77 nfv bpsupp0RX×supp0RY
78 nfmpo2 _baA,bAiAifi=a+MbXaRYb0R
79 nfcv _bp
80 78 79 nffv _baA,bAiAifi=a+MbXaRYb0Rp
81 nfcv _b0F
82 80 81 nfeq baA,bAiAifi=a+MbXaRYb0Rp=0F
83 77 82 nfor bpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
84 simp3 φpA×Ap=abp=ab
85 simp2 φpA×Ap=abpA×A
86 84 85 eqeltrrd φpA×Ap=ababA×A
87 opelxp abA×AaAbA
88 86 87 sylib φpA×Ap=abaAbA
89 ianor ¬asupp0RXbsupp0RY¬asupp0RX¬bsupp0RY
90 22 ffnd φXFnA
91 17 a1i φAV
92 10 fvexi 0RV
93 92 a1i φ0RV
94 elsuppfn XFnAAV0RVasupp0RXaAXa0R
95 90 91 93 94 syl3anc φasupp0RXaAXa0R
96 95 biimprd φaAXa0Rasupp0RX
97 96 3ad2ant1 φaAbAaAXa0Rasupp0RX
98 24 97 mpand φaAbAXa0Rasupp0RX
99 98 necon1bd φaAbA¬asupp0RXXa=0R
100 26 ffnd φYFnA
101 elsuppfn YFnAAV0RVbsupp0RYbAYb0R
102 100 91 93 101 syl3anc φbsupp0RYbAYb0R
103 102 biimprd φbAYb0Rbsupp0RY
104 103 3ad2ant1 φaAbAbAYb0Rbsupp0RY
105 28 104 mpand φaAbAYb0Rbsupp0RY
106 105 necon1bd φaAbA¬bsupp0RYYb=0R
107 99 106 orim12d φaAbA¬asupp0RX¬bsupp0RYXa=0RYb=0R
108 107 imp φaAbA¬asupp0RX¬bsupp0RYXa=0RYb=0R
109 89 108 sylan2b φaAbA¬asupp0RXbsupp0RYXa=0RYb=0R
110 oveq1 Xa=0RXaRYb=0RRYb
111 21 9 10 ringlz RRingYbBaseR0RRYb=0R
112 20 29 111 syl2anc φaAbA0RRYb=0R
113 110 112 sylan9eqr φaAbAXa=0RXaRYb=0R
114 oveq2 Yb=0RXaRYb=XaR0R
115 21 9 10 ringrz RRingXaBaseRXaR0R=0R
116 20 25 115 syl2anc φaAbAXaR0R=0R
117 114 116 sylan9eqr φaAbAYb=0RXaRYb=0R
118 113 117 jaodan φaAbAXa=0RYb=0RXaRYb=0R
119 118 adantr φaAbAXa=0RYb=0Ri=a+MbXaRYb=0R
120 eqidd φaAbAXa=0RYb=0R¬i=a+Mb0R=0R
121 119 120 ifeqda φaAbAXa=0RYb=0Rifi=a+MbXaRYb0R=0R
122 121 mpteq2dv φaAbAXa=0RYb=0RiAifi=a+MbXaRYb0R=iA0R
123 fconstmpt A×0R=iA0R
124 1 10 3 5 6 mnring0g2d φA×0R=0F
125 123 124 eqtr3id φiA0R=0F
126 125 3ad2ant1 φaAbAiA0R=0F
127 126 adantr φaAbAXa=0RYb=0RiA0R=0F
128 122 127 eqtrd φaAbAXa=0RYb=0RiAifi=a+MbXaRYb0R=0F
129 109 128 syldan φaAbA¬asupp0RXbsupp0RYiAifi=a+MbXaRYb0R=0F
130 129 ex φaAbA¬asupp0RXbsupp0RYiAifi=a+MbXaRYb0R=0F
131 130 orrd φaAbAasupp0RXbsupp0RYiAifi=a+MbXaRYb0R=0F
132 131 3expb φaAbAasupp0RXbsupp0RYiAifi=a+MbXaRYb0R=0F
133 132 3adant3 φaAbAp=abasupp0RXbsupp0RYiAifi=a+MbXaRYb0R=0F
134 eleq1 p=abpsupp0RX×supp0RYabsupp0RX×supp0RY
135 opelxp absupp0RX×supp0RYasupp0RXbsupp0RY
136 134 135 bitrdi p=abpsupp0RX×supp0RYasupp0RXbsupp0RY
137 136 3ad2ant3 φaAbAp=abpsupp0RX×supp0RYasupp0RXbsupp0RY
138 simp2l φaAbAp=abaA
139 simp2r φaAbAp=abbA
140 eqidd φaAbAp=abaA,bAiAifi=a+MbXaRYb0R=aA,bAiAifi=a+MbXaRYb0R
141 simp3 φaAbAp=abp=ab
142 17 mptex iAifi=a+MbXaRYb0RV
143 142 a1i φaAbAp=abaAbAiAifi=a+MbXaRYb0RV
144 140 141 143 fvmpopr2d φaAbAp=abaAbAaA,bAiAifi=a+MbXaRYb0Rp=iAifi=a+MbXaRYb0R
145 138 139 144 mpd3an23 φaAbAp=abaA,bAiAifi=a+MbXaRYb0Rp=iAifi=a+MbXaRYb0R
146 145 eqeq1d φaAbAp=abaA,bAiAifi=a+MbXaRYb0Rp=0FiAifi=a+MbXaRYb0R=0F
147 137 146 orbi12d φaAbAp=abpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0Fasupp0RXbsupp0RYiAifi=a+MbXaRYb0R=0F
148 133 147 mpbird φaAbAp=abpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
149 88 148 syld3an2 φpA×Ap=abpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
150 149 3expia φpA×Ap=abpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
151 76 83 150 exlimd φpA×Abp=abpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
152 68 75 151 exlimd φpA×Aabp=abpsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
153 67 152 mpd φpA×Apsupp0RX×supp0RYaA,bAiAifi=a+MbXaRYb0Rp=0F
154 53 54 56 62 153 finnzfsuppd φfinSupp0FaA,bAiAifi=a+MbXaRYb0R
155 2 13 16 19 51 154 gsumcl φFaA,bAiAifi=a+MbXaRYb0RB
156 12 155 eqeltrd φX·˙YB