Metamath Proof Explorer


Theorem ovolicc2lem5

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φA
ovolicc.2 φB
ovolicc.3 φAB
ovolicc2.4 S=seq1+absF
ovolicc2.5 φF:2
ovolicc2.6 φU𝒫ran.FFin
ovolicc2.7 φABU
ovolicc2.8 φG:U
ovolicc2.9 φtU.FGt=t
ovolicc2.10 T=uU|uAB
Assertion ovolicc2lem5 φBAsupranS*<

Proof

Step Hyp Ref Expression
1 ovolicc.1 φA
2 ovolicc.2 φB
3 ovolicc.3 φAB
4 ovolicc2.4 S=seq1+absF
5 ovolicc2.5 φF:2
6 ovolicc2.6 φU𝒫ran.FFin
7 ovolicc2.7 φABU
8 ovolicc2.8 φG:U
9 ovolicc2.9 φtU.FGt=t
10 ovolicc2.10 T=uU|uAB
11 1 rexrd φA*
12 2 rexrd φB*
13 lbicc2 A*B*ABAAB
14 11 12 3 13 syl3anc φAAB
15 7 14 sseldd φAU
16 eluni2 AUzUAz
17 15 16 sylib φzUAz
18 6 elin2d φUFin
19 10 ssrab3 TU
20 ssfi UFinTUTFin
21 18 19 20 sylancl φTFin
22 7 adantr φtTABU
23 ineq1 u=tuAB=tAB
24 23 neeq1d u=tuABtAB
25 24 10 elrab2 tTtUtAB
26 25 simplbi tTtU
27 ffvelcdm G:UtUGt
28 8 26 27 syl2an φtTGt
29 5 ffvelcdmda φGtFGt2
30 28 29 syldan φtTFGt2
31 30 elin2d φtTFGt2
32 xp2nd FGt22ndFGt
33 31 32 syl φtT2ndFGt
34 2 adantr φtTB
35 33 34 ifcld φtTif2ndFGtB2ndFGtB
36 25 simprbi tTtAB
37 36 adantl φtTtAB
38 n0 tAByytAB
39 37 38 sylib φtTyytAB
40 1 adantr φtTytABA
41 simprr φtTytABytAB
42 41 elin2d φtTytAByAB
43 2 adantr φtTytABB
44 elicc2 AByAByAyyB
45 1 43 44 syl2an2r φtTytAByAByAyyB
46 42 45 mpbid φtTytAByAyyB
47 46 simp1d φtTytABy
48 31 adantrr φtTytABFGt2
49 48 32 syl φtTytAB2ndFGt
50 46 simp2d φtTytABAy
51 41 elin1d φtTytAByt
52 28 adantrr φtTytABGt
53 fvco3 F:2Gt.FGt=.FGt
54 5 52 53 syl2an2r φtTytAB.FGt=.FGt
55 26 9 sylan2 φtT.FGt=t
56 55 adantrr φtTytAB.FGt=t
57 1st2nd2 FGt2FGt=1stFGt2ndFGt
58 48 57 syl φtTytABFGt=1stFGt2ndFGt
59 58 fveq2d φtTytAB.FGt=.1stFGt2ndFGt
60 df-ov 1stFGt2ndFGt=.1stFGt2ndFGt
61 59 60 eqtr4di φtTytAB.FGt=1stFGt2ndFGt
62 54 56 61 3eqtr3d φtTytABt=1stFGt2ndFGt
63 51 62 eleqtrd φtTytABy1stFGt2ndFGt
64 xp1st FGt21stFGt
65 48 64 syl φtTytAB1stFGt
66 rexr 1stFGt1stFGt*
67 rexr 2ndFGt2ndFGt*
68 elioo2 1stFGt*2ndFGt*y1stFGt2ndFGty1stFGt<yy<2ndFGt
69 66 67 68 syl2an 1stFGt2ndFGty1stFGt2ndFGty1stFGt<yy<2ndFGt
70 65 49 69 syl2anc φtTytABy1stFGt2ndFGty1stFGt<yy<2ndFGt
71 63 70 mpbid φtTytABy1stFGt<yy<2ndFGt
72 71 simp3d φtTytABy<2ndFGt
73 47 49 72 ltled φtTytABy2ndFGt
74 40 47 49 50 73 letrd φtTytABA2ndFGt
75 74 expr φtTytABA2ndFGt
76 75 exlimdv φtTyytABA2ndFGt
77 39 76 mpd φtTA2ndFGt
78 3 adantr φtTAB
79 breq2 2ndFGt=if2ndFGtB2ndFGtBA2ndFGtAif2ndFGtB2ndFGtB
80 breq2 B=if2ndFGtB2ndFGtBABAif2ndFGtB2ndFGtB
81 79 80 ifboth A2ndFGtABAif2ndFGtB2ndFGtB
82 77 78 81 syl2anc φtTAif2ndFGtB2ndFGtB
83 min2 2ndFGtBif2ndFGtB2ndFGtBB
84 33 34 83 syl2anc φtTif2ndFGtB2ndFGtBB
85 elicc2 ABif2ndFGtB2ndFGtBABif2ndFGtB2ndFGtBAif2ndFGtB2ndFGtBif2ndFGtB2ndFGtBB
86 1 2 85 syl2anc φif2ndFGtB2ndFGtBABif2ndFGtB2ndFGtBAif2ndFGtB2ndFGtBif2ndFGtB2ndFGtBB
87 86 adantr φtTif2ndFGtB2ndFGtBABif2ndFGtB2ndFGtBAif2ndFGtB2ndFGtBif2ndFGtB2ndFGtBB
88 35 82 84 87 mpbir3and φtTif2ndFGtB2ndFGtBAB
89 22 88 sseldd φtTif2ndFGtB2ndFGtBU
90 eluni2 if2ndFGtB2ndFGtBUxUif2ndFGtB2ndFGtBx
91 89 90 sylib φtTxUif2ndFGtB2ndFGtBx
92 simprl φtTxUif2ndFGtB2ndFGtBxxU
93 simprr φtTxUif2ndFGtB2ndFGtBxif2ndFGtB2ndFGtBx
94 88 adantr φtTxUif2ndFGtB2ndFGtBxif2ndFGtB2ndFGtBAB
95 inelcm if2ndFGtB2ndFGtBxif2ndFGtB2ndFGtBABxAB
96 93 94 95 syl2anc φtTxUif2ndFGtB2ndFGtBxxAB
97 ineq1 u=xuAB=xAB
98 97 neeq1d u=xuABxAB
99 98 10 elrab2 xTxUxAB
100 92 96 99 sylanbrc φtTxUif2ndFGtB2ndFGtBxxT
101 91 100 93 reximssdv φtTxTif2ndFGtB2ndFGtBx
102 101 ralrimiva φtTxTif2ndFGtB2ndFGtBx
103 eleq2 x=htif2ndFGtB2ndFGtBxif2ndFGtB2ndFGtBht
104 103 ac6sfi TFintTxTif2ndFGtB2ndFGtBxhh:TTtTif2ndFGtB2ndFGtBht
105 21 102 104 syl2anc φhh:TTtTif2ndFGtB2ndFGtBht
106 105 adantr φzUAzhh:TTtTif2ndFGtB2ndFGtBht
107 2fveq3 x=tFGx=FGt
108 107 fveq2d x=t2ndFGx=2ndFGt
109 108 breq1d x=t2ndFGxB2ndFGtB
110 109 108 ifbieq1d x=tif2ndFGxB2ndFGxB=if2ndFGtB2ndFGtB
111 fveq2 x=thx=ht
112 110 111 eleq12d x=tif2ndFGxB2ndFGxBhxif2ndFGtB2ndFGtBht
113 112 cbvralvw xTif2ndFGxB2ndFGxBhxtTif2ndFGtB2ndFGtBht
114 1 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxA
115 2 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxB
116 3 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxAB
117 5 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxF:2
118 6 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxU𝒫ran.FFin
119 7 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxABU
120 8 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxG:U
121 9 adantlr φzUAzh:TTxTif2ndFGxB2ndFGxBhxtU.FGt=t
122 simprrl φzUAzh:TTxTif2ndFGxB2ndFGxBhxh:TT
123 simprrr φzUAzh:TTxTif2ndFGxB2ndFGxBhxxTif2ndFGxB2ndFGxBhx
124 112 rspccva xTif2ndFGxB2ndFGxBhxtTif2ndFGtB2ndFGtBht
125 123 124 sylan φzUAzh:TTxTif2ndFGxB2ndFGxBhxtTif2ndFGtB2ndFGtBht
126 simprlr φzUAzh:TTxTif2ndFGxB2ndFGxBhxAz
127 simprll φzUAzh:TTxTif2ndFGxB2ndFGxBhxzU
128 14 adantr φzUAzh:TTxTif2ndFGxB2ndFGxBhxAAB
129 inelcm AzAABzAB
130 126 128 129 syl2anc φzUAzh:TTxTif2ndFGxB2ndFGxBhxzAB
131 ineq1 u=zuAB=zAB
132 131 neeq1d u=zuABzAB
133 132 10 elrab2 zTzUzAB
134 127 130 133 sylanbrc φzUAzh:TTxTif2ndFGxB2ndFGxBhxzT
135 eqid seq1h1st×z=seq1h1st×z
136 fveq2 m=nseq1h1st×zm=seq1h1st×zn
137 136 eleq2d m=nBseq1h1st×zmBseq1h1st×zn
138 137 cbvrabv m|Bseq1h1st×zm=n|Bseq1h1st×zn
139 eqid supm|Bseq1h1st×zm<=supm|Bseq1h1st×zm<
140 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 ovolicc2lem4 φzUAzh:TTxTif2ndFGxB2ndFGxBhxBAsupranS*<
141 140 anassrs φzUAzh:TTxTif2ndFGxB2ndFGxBhxBAsupranS*<
142 141 expr φzUAzh:TTxTif2ndFGxB2ndFGxBhxBAsupranS*<
143 113 142 biimtrrid φzUAzh:TTtTif2ndFGtB2ndFGtBhtBAsupranS*<
144 143 expimpd φzUAzh:TTtTif2ndFGtB2ndFGtBhtBAsupranS*<
145 144 exlimdv φzUAzhh:TTtTif2ndFGtB2ndFGtBhtBAsupranS*<
146 106 145 mpd φzUAzBAsupranS*<
147 17 146 rexlimddv φBAsupranS*<