Metamath Proof Explorer


Theorem perfectlem2

Description: Lemma for perfect . (Contributed by Mario Carneiro, 17-May-2016) Replace OLD theorem. (Revised by Wolf Lammen, 17-Sep-2020)

Ref Expression
Hypotheses perfectlem.1 φA
perfectlem.2 φB
perfectlem.3 φ¬2B
perfectlem.4 φ1σ2AB=22AB
Assertion perfectlem2 φBB=2A+11

Proof

Step Hyp Ref Expression
1 perfectlem.1 φA
2 perfectlem.2 φB
3 perfectlem.3 φ¬2B
4 perfectlem.4 φ1σ2AB=22AB
5 1red φ1
6 1 2 3 4 perfectlem1 φ2A+12A+11B2A+11
7 6 simp3d φB2A+11
8 7 nnred φB2A+11
9 2 nnred φB
10 7 nnge1d φ1B2A+11
11 2cn 2
12 exp1 221=2
13 11 12 ax-mp 21=2
14 df-2 2=1+1
15 13 14 eqtri 21=1+1
16 2re 2
17 16 a1i φ2
18 1zzd φ1
19 1 peano2nnd φA+1
20 19 nnzd φA+1
21 1lt2 1<2
22 21 a1i φ1<2
23 1re 1
24 1 nnrpd φA+
25 ltaddrp 1A+1<1+A
26 23 24 25 sylancr φ1<1+A
27 ax-1cn 1
28 1 nncnd φA
29 addcom 1A1+A=A+1
30 27 28 29 sylancr φ1+A=A+1
31 26 30 breqtrd φ1<A+1
32 ltexp2a 21A+11<21<A+121<2A+1
33 17 18 20 22 31 32 syl32anc φ21<2A+1
34 15 33 eqbrtrrid φ1+1<2A+1
35 6 simp1d φ2A+1
36 35 nnred φ2A+1
37 5 5 36 ltaddsubd φ1+1<2A+11<2A+11
38 34 37 mpbid φ1<2A+11
39 0lt1 0<1
40 39 a1i φ0<1
41 peano2rem 2A+12A+11
42 36 41 syl φ2A+11
43 expgt1 2A+11<21<2A+1
44 16 19 22 43 mp3an2i φ1<2A+1
45 posdif 12A+11<2A+10<2A+11
46 23 36 45 sylancr φ1<2A+10<2A+11
47 44 46 mpbid φ0<2A+11
48 2 nngt0d φ0<B
49 ltdiv2 10<12A+110<2A+11B0<B1<2A+11B2A+11<B1
50 5 40 42 47 9 48 49 syl222anc φ1<2A+11B2A+11<B1
51 38 50 mpbid φB2A+11<B1
52 2 nncnd φB
53 52 div1d φB1=B
54 51 53 breqtrd φB2A+11<B
55 5 8 9 10 54 lelttrd φ1<B
56 eluz2b2 B2B1<B
57 2 55 56 sylanbrc φB2
58 fzfid φ1BFin
59 dvdsssfz1 Bx|xB1B
60 2 59 syl φx|xB1B
61 58 60 ssfid φx|xBFin
62 61 ad2antrr φnnB¬nB2A+11Bx|xBFin
63 ssrab2 x|xB
64 63 a1i φnnB¬nB2A+11Bx|xB
65 64 sselda φnnB¬nB2A+11Bkx|xBk
66 65 nnred φnnB¬nB2A+11Bkx|xBk
67 65 nnnn0d φnnB¬nB2A+11Bkx|xBk0
68 67 nn0ge0d φnnB¬nB2A+11Bkx|xB0k
69 df-tp B2A+11Bn=B2A+11Bn
70 7 2 prssd φB2A+11B
71 70 ad2antrr φnnB¬nB2A+11BB2A+11B
72 simplrl φnnB¬nB2A+11Bn
73 72 snssd φnnB¬nB2A+11Bn
74 71 73 unssd φnnB¬nB2A+11BB2A+11Bn
75 69 74 eqsstrid φnnB¬nB2A+11BB2A+11Bn
76 6 simp2d φ2A+11
77 76 nnzd φ2A+11
78 7 nnzd φB2A+11
79 dvdsmul2 2A+11B2A+11B2A+112A+11B2A+11
80 77 78 79 syl2anc φB2A+112A+11B2A+11
81 76 nncnd φ2A+11
82 76 nnne0d φ2A+110
83 52 81 82 divcan2d φ2A+11B2A+11=B
84 80 83 breqtrd φB2A+11B
85 breq1 x=B2A+11xBB2A+11B
86 84 85 syl5ibrcom φx=B2A+11xB
87 86 ad2antrr φnnB¬nB2A+11Bx=B2A+11xB
88 2 nnzd φB
89 iddvds BBB
90 88 89 syl φBB
91 breq1 x=BxBBB
92 90 91 syl5ibrcom φx=BxB
93 92 ad2antrr φnnB¬nB2A+11Bx=BxB
94 simplrr φnnB¬nB2A+11BnB
95 breq1 x=nxBnB
96 94 95 syl5ibrcom φnnB¬nB2A+11Bx=nxB
97 87 93 96 3jaod φnnB¬nB2A+11Bx=B2A+11x=Bx=nxB
98 eltpi xB2A+11Bnx=B2A+11x=Bx=n
99 97 98 impel φnnB¬nB2A+11BxB2A+11BnxB
100 75 99 ssrabdv φnnB¬nB2A+11BB2A+11Bnx|xB
101 62 66 68 100 fsumless φnnB¬nB2A+11BkB2A+11Bnkkx|xBk
102 simpr φnnB¬nB2A+11B¬nB2A+11B
103 disjsn B2A+11Bn=¬nB2A+11B
104 102 103 sylibr φnnB¬nB2A+11BB2A+11Bn=
105 69 a1i φnnB¬nB2A+11BB2A+11Bn=B2A+11Bn
106 tpfi B2A+11BnFin
107 106 a1i φnnB¬nB2A+11BB2A+11BnFin
108 75 sselda φnnB¬nB2A+11BkB2A+11Bnk
109 108 nncnd φnnB¬nB2A+11BkB2A+11Bnk
110 104 105 107 109 fsumsplit φnnB¬nB2A+11BkB2A+11Bnk=kB2A+11Bk+knk
111 7 nncnd φB2A+11
112 id k=B2A+11k=B2A+11
113 112 sumsn B2A+11B2A+11kB2A+11k=B2A+11
114 7 111 113 syl2anc φkB2A+11k=B2A+11
115 id k=Bk=B
116 115 sumsn BBkBk=B
117 2 52 116 syl2anc φkBk=B
118 114 117 oveq12d φkB2A+11k+kBk=B2A+11+B
119 incom BB2A+11=B2A+11B
120 8 54 gtned φBB2A+11
121 disjsn2 BB2A+11BB2A+11=
122 120 121 syl φBB2A+11=
123 119 122 eqtr3id φB2A+11B=
124 df-pr B2A+11B=B2A+11B
125 124 a1i φB2A+11B=B2A+11B
126 prfi B2A+11BFin
127 126 a1i φB2A+11BFin
128 70 sselda φkB2A+11Bk
129 128 nncnd φkB2A+11Bk
130 123 125 127 129 fsumsplit φkB2A+11Bk=kB2A+11k+kBk
131 81 52 mulcld φ2A+11B
132 52 131 81 82 divdird φB+2A+11B2A+11=B2A+11+2A+11B2A+11
133 35 nncnd φ2A+1
134 1cnd φ1
135 133 134 52 subdird φ2A+11B=2A+1B1B
136 52 mullidd φ1B=B
137 136 oveq2d φ2A+1B1B=2A+1BB
138 135 137 eqtrd φ2A+11B=2A+1BB
139 138 oveq2d φB+2A+11B=B+2A+1B-B
140 133 52 mulcld φ2A+1B
141 52 140 pncan3d φB+2A+1B-B=2A+1B
142 139 141 eqtrd φB+2A+11B=2A+1B
143 142 oveq1d φB+2A+11B2A+11=2A+1B2A+11
144 133 52 81 82 divassd φ2A+1B2A+11=2A+1B2A+11
145 143 144 eqtrd φB+2A+11B2A+11=2A+1B2A+11
146 52 81 82 divcan3d φ2A+11B2A+11=B
147 146 oveq2d φB2A+11+2A+11B2A+11=B2A+11+B
148 132 145 147 3eqtr3d φ2A+1B2A+11=B2A+11+B
149 118 130 148 3eqtr4d φkB2A+11Bk=2A+1B2A+11
150 149 ad2antrr φnnB¬nB2A+11BkB2A+11Bk=2A+1B2A+11
151 72 nncnd φnnB¬nB2A+11Bn
152 id k=nk=n
153 152 sumsn nnknk=n
154 151 151 153 syl2anc φnnB¬nB2A+11Bknk=n
155 150 154 oveq12d φnnB¬nB2A+11BkB2A+11Bk+knk=2A+1B2A+11+n
156 110 155 eqtrd φnnB¬nB2A+11BkB2A+11Bnk=2A+1B2A+11+n
157 1 nnnn0d φA0
158 expp1 2A02A+1=2A2
159 11 157 158 sylancr φ2A+1=2A2
160 2nn 2
161 nnexpcl 2A02A
162 160 157 161 sylancr φ2A
163 162 nncnd φ2A
164 mulcom 2A22A2=22A
165 163 11 164 sylancl φ2A2=22A
166 159 165 eqtrd φ2A+1=22A
167 166 oveq1d φ2A+1B=22AB
168 2cnd φ2
169 168 163 52 mulassd φ22AB=22AB
170 2prm 2
171 coprm 2B¬2B2gcdB=1
172 170 88 171 sylancr φ¬2B2gcdB=1
173 3 172 mpbid φ2gcdB=1
174 2z 2
175 rpexp1i 2BA02gcdB=12AgcdB=1
176 174 88 157 175 mp3an2i φ2gcdB=12AgcdB=1
177 173 176 mpd φ2AgcdB=1
178 sgmmul 12AB2AgcdB=11σ2AB=1σ2A1σB
179 134 162 2 177 178 syl13anc φ1σ2AB=1σ2A1σB
180 pncan A1A+1-1=A
181 28 27 180 sylancl φA+1-1=A
182 181 oveq2d φ2A+1-1=2A
183 182 oveq2d φ1σ2A+1-1=1σ2A
184 1sgm2ppw A+11σ2A+1-1=2A+11
185 19 184 syl φ1σ2A+1-1=2A+11
186 183 185 eqtr3d φ1σ2A=2A+11
187 186 oveq1d φ1σ2A1σB=2A+111σB
188 179 4 187 3eqtr3d φ22AB=2A+111σB
189 167 169 188 3eqtrd φ2A+1B=2A+111σB
190 189 oveq1d φ2A+1B2A+11=2A+111σB2A+11
191 1nn0 10
192 sgmnncl 10B1σB
193 191 2 192 sylancr φ1σB
194 193 nncnd φ1σB
195 194 81 82 divcan3d φ2A+111σB2A+11=1σB
196 190 144 195 3eqtr3d φ2A+1B2A+11=1σB
197 sgmval 1B1σB=kx|xBk1
198 27 2 197 sylancr φ1σB=kx|xBk1
199 simpr φkx|xBkx|xB
200 63 199 sselid φkx|xBk
201 200 nncnd φkx|xBk
202 201 cxp1d φkx|xBk1=k
203 202 sumeq2dv φkx|xBk1=kx|xBk
204 196 198 203 3eqtrrd φkx|xBk=2A+1B2A+11
205 204 ad2antrr φnnB¬nB2A+11Bkx|xBk=2A+1B2A+11
206 101 156 205 3brtr3d φnnB¬nB2A+11B2A+1B2A+11+n2A+1B2A+11
207 36 8 remulcld φ2A+1B2A+11
208 207 ad2antrr φnnB¬nB2A+11B2A+1B2A+11
209 72 nnrpd φnnB¬nB2A+11Bn+
210 208 209 ltaddrpd φnnB¬nB2A+11B2A+1B2A+11<2A+1B2A+11+n
211 72 nnred φnnB¬nB2A+11Bn
212 208 211 readdcld φnnB¬nB2A+11B2A+1B2A+11+n
213 208 212 ltnled φnnB¬nB2A+11B2A+1B2A+11<2A+1B2A+11+n¬2A+1B2A+11+n2A+1B2A+11
214 210 213 mpbid φnnB¬nB2A+11B¬2A+1B2A+11+n2A+1B2A+11
215 206 214 condan φnnBnB2A+11B
216 elpri nB2A+11Bn=B2A+11n=B
217 215 216 syl φnnBn=B2A+11n=B
218 217 expr φnnBn=B2A+11n=B
219 218 ralrimiva φnnBn=B2A+11n=B
220 5 55 gtned φB1
221 220 necomd φ1B
222 1dvds B1B
223 88 222 syl φ1B
224 breq1 n=1nB1B
225 eqeq1 n=1n=B2A+111=B2A+11
226 eqeq1 n=1n=B1=B
227 225 226 orbi12d n=1n=B2A+11n=B1=B2A+111=B
228 224 227 imbi12d n=1nBn=B2A+11n=B1B1=B2A+111=B
229 1nn 1
230 229 a1i φ1
231 228 219 230 rspcdva φ1B1=B2A+111=B
232 223 231 mpd φ1=B2A+111=B
233 232 ord φ¬1=B2A+111=B
234 233 necon1ad φ1B1=B2A+11
235 221 234 mpd φ1=B2A+11
236 235 eqeq2d φn=1n=B2A+11
237 236 orbi1d φn=1n=Bn=B2A+11n=B
238 237 imbi2d φnBn=1n=BnBn=B2A+11n=B
239 238 ralbidv φnnBn=1n=BnnBn=B2A+11n=B
240 219 239 mpbird φnnBn=1n=B
241 isprm2 BB2nnBn=1n=B
242 57 240 241 sylanbrc φB
243 207 ltp1d φ2A+1B2A+11<2A+1B2A+11+1
244 peano2re 2A+1B2A+112A+1B2A+11+1
245 207 244 syl φ2A+1B2A+11+1
246 207 245 ltnled φ2A+1B2A+11<2A+1B2A+11+1¬2A+1B2A+11+12A+1B2A+11
247 243 246 mpbid φ¬2A+1B2A+11+12A+1B2A+11
248 200 nnred φkx|xBk
249 200 nnnn0d φkx|xBk0
250 249 nn0ge0d φkx|xB0k
251 df-tp B2A+11B1=B2A+11B1
252 snssi 11
253 229 252 mp1i φ1
254 70 253 unssd φB2A+11B1
255 251 254 eqsstrid φB2A+11B1
256 breq1 x=1xB1B
257 223 256 syl5ibrcom φx=1xB
258 86 92 257 3jaod φx=B2A+11x=Bx=1xB
259 eltpi xB2A+11B1x=B2A+11x=Bx=1
260 258 259 impel φxB2A+11B1xB
261 255 260 ssrabdv φB2A+11B1x|xB
262 61 248 250 261 fsumless φkB2A+11B1kkx|xBk
263 262 adantr φB2A+11kB2A+11B1kkx|xBk
264 52 81 82 diveq1ad φB2A+11=1B=2A+11
265 264 necon3bid φB2A+111B2A+11
266 265 biimpar φB2A+11B2A+111
267 266 necomd φB2A+111B2A+11
268 221 adantr φB2A+111B
269 267 268 nelprd φB2A+11¬1B2A+11B
270 disjsn B2A+11B1=¬1B2A+11B
271 269 270 sylibr φB2A+11B2A+11B1=
272 251 a1i φB2A+11B2A+11B1=B2A+11B1
273 tpfi B2A+11B1Fin
274 273 a1i φB2A+11B2A+11B1Fin
275 255 adantr φB2A+11B2A+11B1
276 275 sselda φB2A+11kB2A+11B1k
277 276 nncnd φB2A+11kB2A+11B1k
278 271 272 274 277 fsumsplit φB2A+11kB2A+11B1k=kB2A+11Bk+k1k
279 id k=1k=1
280 279 sumsn 11k1k=1
281 5 27 280 sylancl φk1k=1
282 149 281 oveq12d φkB2A+11Bk+k1k=2A+1B2A+11+1
283 282 adantr φB2A+11kB2A+11Bk+k1k=2A+1B2A+11+1
284 278 283 eqtrd φB2A+11kB2A+11B1k=2A+1B2A+11+1
285 204 adantr φB2A+11kx|xBk=2A+1B2A+11
286 263 284 285 3brtr3d φB2A+112A+1B2A+11+12A+1B2A+11
287 286 ex φB2A+112A+1B2A+11+12A+1B2A+11
288 287 necon1bd φ¬2A+1B2A+11+12A+1B2A+11B=2A+11
289 247 288 mpd φB=2A+11
290 242 289 jca φBB=2A+11