Metamath Proof Explorer


Theorem pntlemb

Description: Lemma for pnt . Unpack all the lower bounds contained in W , in the form they will be used. For comparison with Equation 10.6.27 of Shapiro, p. 434, Z is x. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R = a + ψ a a
pntlem1.a φ A +
pntlem1.b φ B +
pntlem1.l φ L 0 1
pntlem1.d D = A + 1
pntlem1.f F = 1 1 D L 32 B D 2
pntlem1.u φ U +
pntlem1.u2 φ U A
pntlem1.e E = U D
pntlem1.k K = e B E
pntlem1.y φ Y + 1 Y
pntlem1.x φ X + Y < X
pntlem1.c φ C +
pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
pntlem1.z φ Z W +∞
Assertion pntlemb φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 pntlem1.a φ A +
3 pntlem1.b φ B +
4 pntlem1.l φ L 0 1
5 pntlem1.d D = A + 1
6 pntlem1.f F = 1 1 D L 32 B D 2
7 pntlem1.u φ U +
8 pntlem1.u2 φ U A
9 pntlem1.e E = U D
10 pntlem1.k K = e B E
11 pntlem1.y φ Y + 1 Y
12 pntlem1.x φ X + Y < X
13 pntlem1.c φ C +
14 pntlem1.w W = Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
15 pntlem1.z φ Z W +∞
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pntlema φ W +
17 16 rpred φ W
18 pnfxr +∞ *
19 elico2 W +∞ * Z W +∞ Z W Z Z < +∞
20 17 18 19 sylancl φ Z W +∞ Z W Z Z < +∞
21 15 20 mpbid φ Z W Z Z < +∞
22 21 simp1d φ Z
23 21 simp2d φ W Z
24 22 16 23 rpgecld φ Z +
25 1re 1
26 25 a1i φ 1
27 ere e
28 27 a1i φ e
29 24 rpsqrtcld φ Z +
30 29 rpred φ Z
31 1lt2 1 < 2
32 egt2lt3 2 < e e < 3
33 32 simpli 2 < e
34 2re 2
35 25 34 27 lttri 1 < 2 2 < e 1 < e
36 31 33 35 mp2an 1 < e
37 36 a1i φ 1 < e
38 4re 4
39 38 a1i φ 4
40 32 simpri e < 3
41 3lt4 3 < 4
42 3re 3
43 27 42 38 lttri e < 3 3 < 4 e < 4
44 40 41 43 mp2an e < 4
45 44 a1i φ e < 4
46 4nn 4
47 nnrp 4 4 +
48 46 47 ax-mp 4 +
49 1 2 3 4 5 6 pntlemd φ L + D + F +
50 49 simp1d φ L +
51 1 2 3 4 5 6 7 8 9 10 pntlemc φ E + K + E 0 1 1 < K U E +
52 51 simp1d φ E +
53 50 52 rpmulcld φ L E +
54 rpdivcl 4 + L E + 4 L E +
55 48 53 54 sylancr φ 4 L E +
56 55 rpred φ 4 L E
57 53 rpred φ L E
58 52 rpred φ E
59 50 rpred φ L
60 eliooord L 0 1 0 < L L < 1
61 4 60 syl φ 0 < L L < 1
62 61 simprd φ L < 1
63 59 26 52 62 ltmul1dd φ L E < 1 E
64 52 rpcnd φ E
65 64 mulid2d φ 1 E = E
66 63 65 breqtrd φ L E < E
67 51 simp3d φ E 0 1 1 < K U E +
68 67 simp1d φ E 0 1
69 eliooord E 0 1 0 < E E < 1
70 68 69 syl φ 0 < E E < 1
71 70 simprd φ E < 1
72 57 58 26 66 71 lttrd φ L E < 1
73 4pos 0 < 4
74 39 73 jctir φ 4 0 < 4
75 ltmul2 L E 1 4 0 < 4 L E < 1 4 L E < 4 1
76 57 26 74 75 syl3anc φ L E < 1 4 L E < 4 1
77 72 76 mpbid φ 4 L E < 4 1
78 4cn 4
79 78 mulid1i 4 1 = 4
80 77 79 breqtrdi φ 4 L E < 4
81 39 39 53 ltmuldivd φ 4 L E < 4 4 < 4 L E
82 80 81 mpbid φ 4 < 4 L E
83 11 simpld φ Y +
84 83 55 rpaddcld φ Y + 4 L E +
85 84 rpred φ Y + 4 L E
86 56 83 ltaddrp2d φ 4 L E < Y + 4 L E
87 85 resqcld φ Y + 4 L E 2
88 12 simpld φ X +
89 51 simp2d φ K +
90 2z 2
91 rpexpcl K + 2 K 2 +
92 89 90 91 sylancl φ K 2 +
93 88 92 rpmulcld φ X K 2 +
94 4z 4
95 rpexpcl X K 2 + 4 X K 2 4 +
96 93 94 95 sylancl φ X K 2 4 +
97 3nn0 3 0
98 2nn 2
99 97 98 decnncl 32
100 nnrp 32 32 +
101 99 100 ax-mp 32 +
102 rpmulcl 32 + B + 32 B +
103 101 3 102 sylancr φ 32 B +
104 67 simp3d φ U E +
105 rpexpcl E + 2 E 2 +
106 52 90 105 sylancl φ E 2 +
107 50 106 rpmulcld φ L E 2 +
108 104 107 rpmulcld φ U E L E 2 +
109 103 108 rpdivcld φ 32 B U E L E 2 +
110 3rp 3 +
111 rpmulcl U + 3 + U 3 +
112 7 110 111 sylancl φ U 3 +
113 112 13 rpaddcld φ U 3 + C +
114 109 113 rpmulcld φ 32 B U E L E 2 U 3 + C +
115 114 rpred φ 32 B U E L E 2 U 3 + C
116 115 rpefcld φ e 32 B U E L E 2 U 3 + C +
117 96 116 rpaddcld φ X K 2 4 + e 32 B U E L E 2 U 3 + C +
118 87 117 ltaddrpd φ Y + 4 L E 2 < Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C
119 118 14 breqtrrdi φ Y + 4 L E 2 < W
120 87 17 22 119 23 ltletrd φ Y + 4 L E 2 < Z
121 24 rprege0d φ Z 0 Z
122 resqrtth Z 0 Z Z 2 = Z
123 121 122 syl φ Z 2 = Z
124 120 123 breqtrrd φ Y + 4 L E 2 < Z 2
125 84 rprege0d φ Y + 4 L E 0 Y + 4 L E
126 29 rprege0d φ Z 0 Z
127 lt2sq Y + 4 L E 0 Y + 4 L E Z 0 Z Y + 4 L E < Z Y + 4 L E 2 < Z 2
128 125 126 127 syl2anc φ Y + 4 L E < Z Y + 4 L E 2 < Z 2
129 124 128 mpbird φ Y + 4 L E < Z
130 56 85 30 86 129 lttrd φ 4 L E < Z
131 39 56 30 82 130 lttrd φ 4 < Z
132 28 39 30 45 131 lttrd φ e < Z
133 26 28 30 37 132 lttrd φ 1 < Z
134 0le1 0 1
135 134 a1i φ 0 1
136 lt2sq 1 0 1 Z 0 Z 1 < Z 1 2 < Z 2
137 26 135 126 136 syl21anc φ 1 < Z 1 2 < Z 2
138 133 137 mpbid φ 1 2 < Z 2
139 sq1 1 2 = 1
140 139 a1i φ 1 2 = 1
141 138 140 123 3brtr3d φ 1 < Z
142 28 30 132 ltled φ e Z
143 22 83 rerpdivcld φ Z Y
144 83 rpred φ Y
145 144 55 ltaddrpd φ Y < Y + 4 L E
146 144 85 30 145 129 lttrd φ Y < Z
147 144 30 29 146 ltmul2dd φ Z Y < Z Z
148 remsqsqrt Z 0 Z Z Z = Z
149 121 148 syl φ Z Z = Z
150 147 149 breqtrd φ Z Y < Z
151 30 22 83 ltmuldivd φ Z Y < Z Z < Z Y
152 150 151 mpbid φ Z < Z Y
153 30 143 152 ltled φ Z Z Y
154 141 142 153 3jca φ 1 < Z e Z Z Z Y
155 56 30 130 ltled φ 4 L E Z
156 88 relogcld φ log X
157 89 rpred φ K
158 67 simp2d φ 1 < K
159 157 158 rplogcld φ log K +
160 156 159 rerpdivcld φ log X log K
161 readdcl log X log K 2 log X log K + 2
162 160 34 161 sylancl φ log X log K + 2
163 24 relogcld φ log Z
164 163 159 rerpdivcld φ log Z log K
165 nndivre log Z log K 4 log Z log K 4
166 164 46 165 sylancl φ log Z log K 4
167 93 relogcld φ log X K 2
168 nndivre log Z 4 log Z 4
169 163 46 168 sylancl φ log Z 4
170 relogexp X K 2 + 4 log X K 2 4 = 4 log X K 2
171 93 94 170 sylancl φ log X K 2 4 = 4 log X K 2
172 96 rpred φ X K 2 4
173 117 rpred φ X K 2 4 + e 32 B U E L E 2 U 3 + C
174 172 116 ltaddrpd φ X K 2 4 < X K 2 4 + e 32 B U E L E 2 U 3 + C
175 rpexpcl Y + 4 L E + 2 Y + 4 L E 2 +
176 84 90 175 sylancl φ Y + 4 L E 2 +
177 173 176 ltaddrpd φ X K 2 4 + e 32 B U E L E 2 U 3 + C < X K 2 4 + e 32 B U E L E 2 U 3 + C + Y + 4 L E 2
178 87 recnd φ Y + 4 L E 2
179 117 rpcnd φ X K 2 4 + e 32 B U E L E 2 U 3 + C
180 178 179 addcomd φ Y + 4 L E 2 + X K 2 4 + e 32 B U E L E 2 U 3 + C = X K 2 4 + e 32 B U E L E 2 U 3 + C + Y + 4 L E 2
181 14 180 eqtrid φ W = X K 2 4 + e 32 B U E L E 2 U 3 + C + Y + 4 L E 2
182 177 181 breqtrrd φ X K 2 4 + e 32 B U E L E 2 U 3 + C < W
183 173 17 22 182 23 ltletrd φ X K 2 4 + e 32 B U E L E 2 U 3 + C < Z
184 172 173 22 174 183 lttrd φ X K 2 4 < Z
185 logltb X K 2 4 + Z + X K 2 4 < Z log X K 2 4 < log Z
186 96 24 185 syl2anc φ X K 2 4 < Z log X K 2 4 < log Z
187 184 186 mpbid φ log X K 2 4 < log Z
188 171 187 eqbrtrrd φ 4 log X K 2 < log Z
189 ltmuldiv2 log X K 2 log Z 4 0 < 4 4 log X K 2 < log Z log X K 2 < log Z 4
190 167 163 74 189 syl3anc φ 4 log X K 2 < log Z log X K 2 < log Z 4
191 188 190 mpbid φ log X K 2 < log Z 4
192 167 169 159 191 ltdiv1dd φ log X K 2 log K < log Z 4 log K
193 88 92 relogmuld φ log X K 2 = log X + log K 2
194 relogexp K + 2 log K 2 = 2 log K
195 89 90 194 sylancl φ log K 2 = 2 log K
196 195 oveq2d φ log X + log K 2 = log X + 2 log K
197 193 196 eqtrd φ log X K 2 = log X + 2 log K
198 197 oveq1d φ log X K 2 log K = log X + 2 log K log K
199 156 recnd φ log X
200 2cnd φ 2
201 159 rpcnd φ log K
202 200 201 mulcld φ 2 log K
203 159 rpcnne0d φ log K log K 0
204 divdir log X 2 log K log K log K 0 log X + 2 log K log K = log X log K + 2 log K log K
205 199 202 203 204 syl3anc φ log X + 2 log K log K = log X log K + 2 log K log K
206 203 simprd φ log K 0
207 200 201 206 divcan4d φ 2 log K log K = 2
208 207 oveq2d φ log X log K + 2 log K log K = log X log K + 2
209 198 205 208 3eqtrd φ log X K 2 log K = log X log K + 2
210 163 recnd φ log Z
211 rpcnne0 4 + 4 4 0
212 48 211 mp1i φ 4 4 0
213 divdiv32 log Z 4 4 0 log K log K 0 log Z 4 log K = log Z log K 4
214 210 212 203 213 syl3anc φ log Z 4 log K = log Z log K 4
215 192 209 214 3brtr3d φ log X log K + 2 < log Z log K 4
216 162 166 215 ltled φ log X log K + 2 log Z log K 4
217 113 rpred φ U 3 + C
218 108 103 rpdivcld φ U E L E 2 32 B +
219 218 rpred φ U E L E 2 32 B
220 219 163 remulcld φ U E L E 2 32 B log Z
221 113 rpcnd φ U 3 + C
222 108 rpcnne0d φ U E L E 2 U E L E 2 0
223 103 rpcnne0d φ 32 B 32 B 0
224 divdiv2 U 3 + C U E L E 2 U E L E 2 0 32 B 32 B 0 U 3 + C U E L E 2 32 B = U 3 + C 32 B U E L E 2
225 221 222 223 224 syl3anc φ U 3 + C U E L E 2 32 B = U 3 + C 32 B U E L E 2
226 103 rpcnd φ 32 B
227 221 226 mulcomd φ U 3 + C 32 B = 32 B U 3 + C
228 227 oveq1d φ U 3 + C 32 B U E L E 2 = 32 B U 3 + C U E L E 2
229 div23 32 B U 3 + C U E L E 2 U E L E 2 0 32 B U 3 + C U E L E 2 = 32 B U E L E 2 U 3 + C
230 226 221 222 229 syl3anc φ 32 B U 3 + C U E L E 2 = 32 B U E L E 2 U 3 + C
231 225 228 230 3eqtrd φ U 3 + C U E L E 2 32 B = 32 B U E L E 2 U 3 + C
232 115 reefcld φ e 32 B U E L E 2 U 3 + C
233 232 96 ltaddrp2d φ e 32 B U E L E 2 U 3 + C < X K 2 4 + e 32 B U E L E 2 U 3 + C
234 232 173 22 233 183 lttrd φ e 32 B U E L E 2 U 3 + C < Z
235 24 reeflogd φ e log Z = Z
236 234 235 breqtrrd φ e 32 B U E L E 2 U 3 + C < e log Z
237 eflt 32 B U E L E 2 U 3 + C log Z 32 B U E L E 2 U 3 + C < log Z e 32 B U E L E 2 U 3 + C < e log Z
238 115 163 237 syl2anc φ 32 B U E L E 2 U 3 + C < log Z e 32 B U E L E 2 U 3 + C < e log Z
239 236 238 mpbird φ 32 B U E L E 2 U 3 + C < log Z
240 231 239 eqbrtrd φ U 3 + C U E L E 2 32 B < log Z
241 217 163 218 ltdivmuld φ U 3 + C U E L E 2 32 B < log Z U 3 + C < U E L E 2 32 B log Z
242 240 241 mpbid φ U 3 + C < U E L E 2 32 B log Z
243 217 220 242 ltled φ U 3 + C U E L E 2 32 B log Z
244 104 rpcnd φ U E
245 107 rpcnd φ L E 2
246 divass U E L E 2 32 B 32 B 0 U E L E 2 32 B = U E L E 2 32 B
247 244 245 223 246 syl3anc φ U E L E 2 32 B = U E L E 2 32 B
248 247 oveq1d φ U E L E 2 32 B log Z = U E L E 2 32 B log Z
249 243 248 breqtrd φ U 3 + C U E L E 2 32 B log Z
250 155 216 249 3jca φ 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z
251 24 154 250 3jca φ Z + 1 < Z e Z Z Z Y 4 L E Z log X log K + 2 log Z log K 4 U 3 + C U E L E 2 32 B log Z