Metamath Proof Explorer


Theorem pntlemb

Description: Lemma for pnt . Unpack all the lower bounds contained in W , in the form they will be used. For comparison with Equation 10.6.27 of Shapiro, p. 434, Z is x. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
Assertion pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pntlema φW+
17 16 rpred φW
18 pnfxr +∞*
19 elico2 W+∞*ZW+∞ZWZZ<+∞
20 17 18 19 sylancl φZW+∞ZWZZ<+∞
21 15 20 mpbid φZWZZ<+∞
22 21 simp1d φZ
23 21 simp2d φWZ
24 22 16 23 rpgecld φZ+
25 1re 1
26 25 a1i φ1
27 ere e
28 27 a1i φe
29 24 rpsqrtcld φZ+
30 29 rpred φZ
31 1lt2 1<2
32 egt2lt3 2<ee<3
33 32 simpli 2<e
34 2re 2
35 25 34 27 lttri 1<22<e1<e
36 31 33 35 mp2an 1<e
37 36 a1i φ1<e
38 4re 4
39 38 a1i φ4
40 32 simpri e<3
41 3lt4 3<4
42 3re 3
43 27 42 38 lttri e<33<4e<4
44 40 41 43 mp2an e<4
45 44 a1i φe<4
46 4nn 4
47 nnrp 44+
48 46 47 ax-mp 4+
49 1 2 3 4 5 6 pntlemd φL+D+F+
50 49 simp1d φL+
51 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
52 51 simp1d φE+
53 50 52 rpmulcld φLE+
54 rpdivcl 4+LE+4LE+
55 48 53 54 sylancr φ4LE+
56 55 rpred φ4LE
57 53 rpred φLE
58 52 rpred φE
59 50 rpred φL
60 eliooord L010<LL<1
61 4 60 syl φ0<LL<1
62 61 simprd φL<1
63 59 26 52 62 ltmul1dd φLE<1E
64 52 rpcnd φE
65 64 mullidd φ1E=E
66 63 65 breqtrd φLE<E
67 51 simp3d φE011<KUE+
68 67 simp1d φE01
69 eliooord E010<EE<1
70 68 69 syl φ0<EE<1
71 70 simprd φE<1
72 57 58 26 66 71 lttrd φLE<1
73 4pos 0<4
74 39 73 jctir φ40<4
75 ltmul2 LE140<4LE<14LE<41
76 57 26 74 75 syl3anc φLE<14LE<41
77 72 76 mpbid φ4LE<41
78 4cn 4
79 78 mulridi 41=4
80 77 79 breqtrdi φ4LE<4
81 39 39 53 ltmuldivd φ4LE<44<4LE
82 80 81 mpbid φ4<4LE
83 11 simpld φY+
84 83 55 rpaddcld φY+4LE+
85 84 rpred φY+4LE
86 56 83 ltaddrp2d φ4LE<Y+4LE
87 85 resqcld φY+4LE2
88 12 simpld φX+
89 51 simp2d φK+
90 2z 2
91 rpexpcl K+2K2+
92 89 90 91 sylancl φK2+
93 88 92 rpmulcld φXK2+
94 4z 4
95 rpexpcl XK2+4XK24+
96 93 94 95 sylancl φXK24+
97 3nn0 30
98 2nn 2
99 97 98 decnncl 32
100 nnrp 3232+
101 99 100 ax-mp 32+
102 rpmulcl 32+B+32B+
103 101 3 102 sylancr φ32B+
104 67 simp3d φUE+
105 rpexpcl E+2E2+
106 52 90 105 sylancl φE2+
107 50 106 rpmulcld φLE2+
108 104 107 rpmulcld φUELE2+
109 103 108 rpdivcld φ32BUELE2+
110 3rp 3+
111 rpmulcl U+3+U3+
112 7 110 111 sylancl φU3+
113 112 13 rpaddcld φU3+C+
114 109 113 rpmulcld φ32BUELE2U3+C+
115 114 rpred φ32BUELE2U3+C
116 115 rpefcld φe32BUELE2U3+C+
117 96 116 rpaddcld φXK24+e32BUELE2U3+C+
118 87 117 ltaddrpd φY+4LE2<Y+4LE2+XK24+e32BUELE2U3+C
119 118 14 breqtrrdi φY+4LE2<W
120 87 17 22 119 23 ltletrd φY+4LE2<Z
121 24 rprege0d φZ0Z
122 resqrtth Z0ZZ2=Z
123 121 122 syl φZ2=Z
124 120 123 breqtrrd φY+4LE2<Z2
125 84 rprege0d φY+4LE0Y+4LE
126 29 rprege0d φZ0Z
127 lt2sq Y+4LE0Y+4LEZ0ZY+4LE<ZY+4LE2<Z2
128 125 126 127 syl2anc φY+4LE<ZY+4LE2<Z2
129 124 128 mpbird φY+4LE<Z
130 56 85 30 86 129 lttrd φ4LE<Z
131 39 56 30 82 130 lttrd φ4<Z
132 28 39 30 45 131 lttrd φe<Z
133 26 28 30 37 132 lttrd φ1<Z
134 0le1 01
135 134 a1i φ01
136 lt2sq 101Z0Z1<Z12<Z2
137 26 135 126 136 syl21anc φ1<Z12<Z2
138 133 137 mpbid φ12<Z2
139 sq1 12=1
140 139 a1i φ12=1
141 138 140 123 3brtr3d φ1<Z
142 28 30 132 ltled φeZ
143 22 83 rerpdivcld φZY
144 83 rpred φY
145 144 55 ltaddrpd φY<Y+4LE
146 144 85 30 145 129 lttrd φY<Z
147 144 30 29 146 ltmul2dd φZY<ZZ
148 remsqsqrt Z0ZZZ=Z
149 121 148 syl φZZ=Z
150 147 149 breqtrd φZY<Z
151 30 22 83 ltmuldivd φZY<ZZ<ZY
152 150 151 mpbid φZ<ZY
153 30 143 152 ltled φZZY
154 141 142 153 3jca φ1<ZeZZZY
155 56 30 130 ltled φ4LEZ
156 88 relogcld φlogX
157 89 rpred φK
158 67 simp2d φ1<K
159 157 158 rplogcld φlogK+
160 156 159 rerpdivcld φlogXlogK
161 readdcl logXlogK2logXlogK+2
162 160 34 161 sylancl φlogXlogK+2
163 24 relogcld φlogZ
164 163 159 rerpdivcld φlogZlogK
165 nndivre logZlogK4logZlogK4
166 164 46 165 sylancl φlogZlogK4
167 93 relogcld φlogXK2
168 nndivre logZ4logZ4
169 163 46 168 sylancl φlogZ4
170 relogexp XK2+4logXK24=4logXK2
171 93 94 170 sylancl φlogXK24=4logXK2
172 96 rpred φXK24
173 117 rpred φXK24+e32BUELE2U3+C
174 172 116 ltaddrpd φXK24<XK24+e32BUELE2U3+C
175 rpexpcl Y+4LE+2Y+4LE2+
176 84 90 175 sylancl φY+4LE2+
177 173 176 ltaddrpd φXK24+e32BUELE2U3+C<XK24+e32BUELE2U3+C+Y+4LE2
178 87 recnd φY+4LE2
179 117 rpcnd φXK24+e32BUELE2U3+C
180 178 179 addcomd φY+4LE2+XK24+e32BUELE2U3+C=XK24+e32BUELE2U3+C+Y+4LE2
181 14 180 eqtrid φW=XK24+e32BUELE2U3+C+Y+4LE2
182 177 181 breqtrrd φXK24+e32BUELE2U3+C<W
183 173 17 22 182 23 ltletrd φXK24+e32BUELE2U3+C<Z
184 172 173 22 174 183 lttrd φXK24<Z
185 logltb XK24+Z+XK24<ZlogXK24<logZ
186 96 24 185 syl2anc φXK24<ZlogXK24<logZ
187 184 186 mpbid φlogXK24<logZ
188 171 187 eqbrtrrd φ4logXK2<logZ
189 ltmuldiv2 logXK2logZ40<44logXK2<logZlogXK2<logZ4
190 167 163 74 189 syl3anc φ4logXK2<logZlogXK2<logZ4
191 188 190 mpbid φlogXK2<logZ4
192 167 169 159 191 ltdiv1dd φlogXK2logK<logZ4logK
193 88 92 relogmuld φlogXK2=logX+logK2
194 relogexp K+2logK2=2logK
195 89 90 194 sylancl φlogK2=2logK
196 195 oveq2d φlogX+logK2=logX+2logK
197 193 196 eqtrd φlogXK2=logX+2logK
198 197 oveq1d φlogXK2logK=logX+2logKlogK
199 156 recnd φlogX
200 2cnd φ2
201 159 rpcnd φlogK
202 200 201 mulcld φ2logK
203 159 rpcnne0d φlogKlogK0
204 divdir logX2logKlogKlogK0logX+2logKlogK=logXlogK+2logKlogK
205 199 202 203 204 syl3anc φlogX+2logKlogK=logXlogK+2logKlogK
206 203 simprd φlogK0
207 200 201 206 divcan4d φ2logKlogK=2
208 207 oveq2d φlogXlogK+2logKlogK=logXlogK+2
209 198 205 208 3eqtrd φlogXK2logK=logXlogK+2
210 163 recnd φlogZ
211 rpcnne0 4+440
212 48 211 mp1i φ440
213 divdiv32 logZ440logKlogK0logZ4logK=logZlogK4
214 210 212 203 213 syl3anc φlogZ4logK=logZlogK4
215 192 209 214 3brtr3d φlogXlogK+2<logZlogK4
216 162 166 215 ltled φlogXlogK+2logZlogK4
217 113 rpred φU3+C
218 108 103 rpdivcld φUELE232B+
219 218 rpred φUELE232B
220 219 163 remulcld φUELE232BlogZ
221 113 rpcnd φU3+C
222 108 rpcnne0d φUELE2UELE20
223 103 rpcnne0d φ32B32B0
224 divdiv2 U3+CUELE2UELE2032B32B0U3+CUELE232B=U3+C32BUELE2
225 221 222 223 224 syl3anc φU3+CUELE232B=U3+C32BUELE2
226 103 rpcnd φ32B
227 221 226 mulcomd φU3+C32B=32BU3+C
228 227 oveq1d φU3+C32BUELE2=32BU3+CUELE2
229 div23 32BU3+CUELE2UELE2032BU3+CUELE2=32BUELE2U3+C
230 226 221 222 229 syl3anc φ32BU3+CUELE2=32BUELE2U3+C
231 225 228 230 3eqtrd φU3+CUELE232B=32BUELE2U3+C
232 115 reefcld φe32BUELE2U3+C
233 232 96 ltaddrp2d φe32BUELE2U3+C<XK24+e32BUELE2U3+C
234 232 173 22 233 183 lttrd φe32BUELE2U3+C<Z
235 24 reeflogd φelogZ=Z
236 234 235 breqtrrd φe32BUELE2U3+C<elogZ
237 eflt 32BUELE2U3+ClogZ32BUELE2U3+C<logZe32BUELE2U3+C<elogZ
238 115 163 237 syl2anc φ32BUELE2U3+C<logZe32BUELE2U3+C<elogZ
239 236 238 mpbird φ32BUELE2U3+C<logZ
240 231 239 eqbrtrd φU3+CUELE232B<logZ
241 217 163 218 ltdivmuld φU3+CUELE232B<logZU3+C<UELE232BlogZ
242 240 241 mpbid φU3+C<UELE232BlogZ
243 217 220 242 ltled φU3+CUELE232BlogZ
244 104 rpcnd φUE
245 107 rpcnd φLE2
246 divass UELE232B32B0UELE232B=UELE232B
247 244 245 223 246 syl3anc φUELE232B=UELE232B
248 247 oveq1d φUELE232BlogZ=UELE232BlogZ
249 243 248 breqtrd φU3+CUELE232BlogZ
250 155 216 249 3jca φ4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
251 24 154 250 3jca φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ