Metamath Proof Explorer


Theorem ppiub

Description: An upper bound on the prime-counting function ppi , which counts the number of primes less than N . (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Assertion ppiub N0Nπ_NN3+2

Proof

Step Hyp Ref Expression
1 3re 3
2 1 a1i N0N3
3 simpl N0NN
4 ppicl Nπ_N0
5 4 nn0red Nπ_N
6 5 adantr N3Nπ_N
7 2re 2
8 resubcl π_N2π_N2
9 6 7 8 sylancl N3Nπ_N2
10 fzfi 4NFin
11 ssrab2 k4N|kmod6154N
12 ssfi 4NFink4N|kmod6154Nk4N|kmod615Fin
13 10 11 12 mp2an k4N|kmod615Fin
14 hashcl k4N|kmod615Fink4N|kmod6150
15 13 14 ax-mp k4N|kmod6150
16 15 nn0rei k4N|kmod615
17 16 a1i N3Nk4N|kmod615
18 3nn 3
19 nndivre N3N3
20 18 19 mpan2 NN3
21 20 adantr N3NN3
22 ppifl Nπ_N=π_N
23 22 adantr N3Nπ_N=π_N
24 ppi3 π_3=2
25 24 a1i N3Nπ_3=2
26 23 25 oveq12d N3Nπ_Nπ_3=π_N2
27 3z 3
28 27 a1i N3N3
29 flcl NN
30 29 adantr N3NN
31 flge N33N3N
32 27 31 mpan2 N3N3N
33 32 biimpa N3N3N
34 eluz2 N33N3N
35 28 30 33 34 syl3anbrc N3NN3
36 ppidif N3π_Nπ_3=3+1N
37 35 36 syl N3Nπ_Nπ_3=3+1N
38 df-4 4=3+1
39 38 oveq1i 4N=3+1N
40 39 ineq1i 4N=3+1N
41 40 fveq2i 4N=3+1N
42 37 41 eqtr4di N3Nπ_Nπ_3=4N
43 26 42 eqtr3d N3Nπ_N2=4N
44 dfin5 4N=k4N|k
45 elfzle1 k4N4k
46 ppiublem2 k4kkmod615
47 46 expcom 4kkkmod615
48 45 47 syl k4Nkkmod615
49 48 ss2rabi k4N|kk4N|kmod615
50 44 49 eqsstri 4Nk4N|kmod615
51 ssdomg k4N|kmod615Fin4Nk4N|kmod6154Nk4N|kmod615
52 13 50 51 mp2 4Nk4N|kmod615
53 inss1 4N4N
54 ssfi 4NFin4N4N4NFin
55 10 53 54 mp2an 4NFin
56 hashdom 4NFink4N|kmod615Fin4Nk4N|kmod6154Nk4N|kmod615
57 55 13 56 mp2an 4Nk4N|kmod6154Nk4N|kmod615
58 52 57 mpbir 4Nk4N|kmod615
59 43 58 eqbrtrdi N3Nπ_N2k4N|kmod615
60 reflcl NN
61 60 adantr N3NN
62 peano2rem NN1
63 61 62 syl N3NN1
64 6nn 6
65 nndivre N16N16
66 63 64 65 sylancl N3NN16
67 reflcl N16N16
68 66 67 syl N3NN16
69 5re 5
70 resubcl N5N5
71 61 69 70 sylancl N3NN5
72 nndivre N56N56
73 71 64 72 sylancl N3NN56
74 reflcl N56N56
75 73 74 syl N3NN56
76 peano2re N56N56+1
77 75 76 syl N3NN56+1
78 peano2rem NN1
79 78 adantr N3NN1
80 nndivre N16N16
81 79 64 80 sylancl N3NN16
82 simpl N3NN
83 resubcl N5N5
84 82 69 83 sylancl N3NN5
85 nndivre N56N56
86 84 64 85 sylancl N3NN56
87 peano2re N56N56+1
88 86 87 syl N3NN56+1
89 flle N16N16N16
90 66 89 syl N3NN16N16
91 1re 1
92 91 a1i N3N1
93 flle NNN
94 93 adantr N3NNN
95 61 82 92 94 lesub1dd N3NN1N1
96 6re 6
97 96 a1i N3N6
98 6pos 0<6
99 98 a1i N3N0<6
100 lediv1 N1N160<6N1N1N16N16
101 63 79 97 99 100 syl112anc N3NN1N1N16N16
102 95 101 mpbid N3NN16N16
103 68 66 81 90 102 letrd N3NN16N16
104 flle N56N56N56
105 73 104 syl N3NN56N56
106 69 a1i N3N5
107 61 82 106 94 lesub1dd N3NN5N5
108 lediv1 N5N560<6N5N5N56N56
109 71 84 97 99 108 syl112anc N3NN5N5N56N56
110 107 109 mpbid N3NN56N56
111 75 73 86 105 110 letrd N3NN56N56
112 75 86 92 111 leadd1dd N3NN56+1N56+1
113 68 77 81 88 103 112 le2addd N3NN16+N56+1N16+N56+1
114 ovex kmod6V
115 114 elpr kmod615kmod6=1kmod6=5
116 115 rabbii k4N|kmod615=k4N|kmod6=1kmod6=5
117 unrab k4N|kmod6=1k4N|kmod6=5=k4N|kmod6=1kmod6=5
118 116 117 eqtr4i k4N|kmod615=k4N|kmod6=1k4N|kmod6=5
119 118 fveq2i k4N|kmod615=k4N|kmod6=1k4N|kmod6=5
120 ssrab2 k4N|kmod6=14N
121 ssfi 4NFink4N|kmod6=14Nk4N|kmod6=1Fin
122 10 120 121 mp2an k4N|kmod6=1Fin
123 ssrab2 k4N|kmod6=54N
124 ssfi 4NFink4N|kmod6=54Nk4N|kmod6=5Fin
125 10 123 124 mp2an k4N|kmod6=5Fin
126 inrab k4N|kmod6=1k4N|kmod6=5=k4N|kmod6=1kmod6=5
127 rabeq0 k4N|kmod6=1kmod6=5=k4N¬kmod6=1kmod6=5
128 1lt5 1<5
129 91 128 ltneii 15
130 eqtr2 kmod6=1kmod6=51=5
131 130 necon3ai 15¬kmod6=1kmod6=5
132 129 131 ax-mp ¬kmod6=1kmod6=5
133 132 a1i k4N¬kmod6=1kmod6=5
134 127 133 mprgbir k4N|kmod6=1kmod6=5=
135 126 134 eqtri k4N|kmod6=1k4N|kmod6=5=
136 hashun k4N|kmod6=1Fink4N|kmod6=5Fink4N|kmod6=1k4N|kmod6=5=k4N|kmod6=1k4N|kmod6=5=k4N|kmod6=1+k4N|kmod6=5
137 122 125 135 136 mp3an k4N|kmod6=1k4N|kmod6=5=k4N|kmod6=1+k4N|kmod6=5
138 119 137 eqtri k4N|kmod615=k4N|kmod6=1+k4N|kmod6=5
139 elfzelz k4Nk
140 nnrp 66+
141 64 140 ax-mp 6+
142 0le1 01
143 1lt6 1<6
144 modid 16+011<61mod6=1
145 91 141 142 143 144 mp4an 1mod6=1
146 145 eqeq2i kmod6=1mod6kmod6=1
147 1z 1
148 moddvds 6k1kmod6=1mod66k1
149 64 147 148 mp3an13 kkmod6=1mod66k1
150 146 149 bitr3id kkmod6=16k1
151 139 150 syl k4Nkmod6=16k1
152 151 rabbiia k4N|kmod6=1=k4N|6k1
153 152 fveq2i k4N|kmod6=1=k4N|6k1
154 64 a1i N3N6
155 4z 4
156 155 a1i N3N4
157 4m1e3 41=3
158 157 fveq2i 41=3
159 35 158 eleqtrrdi N3NN41
160 147 a1i N3N1
161 154 156 159 160 hashdvds N3Nk4N|6k1=N164-1-16
162 153 161 eqtrid N3Nk4N|kmod6=1=N164-1-16
163 2cn 2
164 ax-1cn 1
165 df-3 3=2+1
166 157 165 eqtri 41=2+1
167 163 164 166 mvrraddi 4-1-1=2
168 167 oveq1i 4-1-16=26
169 168 fveq2i 4-1-16=26
170 0re 0
171 64 nnne0i 60
172 7 96 171 redivcli 26
173 2pos 0<2
174 7 96 173 98 divgt0ii 0<26
175 170 172 174 ltleii 026
176 2lt6 2<6
177 6cn 6
178 177 mulridi 61=6
179 176 178 breqtrri 2<61
180 96 98 pm3.2i 60<6
181 ltdivmul 2160<626<12<61
182 7 91 180 181 mp3an 26<12<61
183 179 182 mpbir 26<1
184 1e0p1 1=0+1
185 183 184 breqtri 26<0+1
186 0z 0
187 flbi 26026=002626<0+1
188 172 186 187 mp2an 26=002626<0+1
189 175 185 188 mpbir2an 26=0
190 169 189 eqtri 4-1-16=0
191 190 oveq2i N164-1-16=N160
192 66 flcld N3NN16
193 192 zcnd N3NN16
194 193 subid1d N3NN160=N16
195 191 194 eqtrid N3NN164-1-16=N16
196 162 195 eqtrd N3Nk4N|kmod6=1=N16
197 5pos 0<5
198 170 69 197 ltleii 05
199 5lt6 5<6
200 modid 56+055<65mod6=5
201 69 141 198 199 200 mp4an 5mod6=5
202 201 eqeq2i kmod6=5mod6kmod6=5
203 5nn 5
204 203 nnzi 5
205 moddvds 6k5kmod6=5mod66k5
206 64 204 205 mp3an13 kkmod6=5mod66k5
207 202 206 bitr3id kkmod6=56k5
208 139 207 syl k4Nkmod6=56k5
209 208 rabbiia k4N|kmod6=5=k4N|6k5
210 209 fveq2i k4N|kmod6=5=k4N|6k5
211 204 a1i N3N5
212 154 156 159 211 hashdvds N3Nk4N|6k5=N564-1-56
213 210 212 eqtrid N3Nk4N|kmod6=5=N564-1-56
214 157 oveq1i 4-1-5=35
215 5cn 5
216 3cn 3
217 215 216 negsubdi2i 53=35
218 3p2e5 3+2=5
219 218 oveq1i 3+2-3=53
220 pncan2 323+2-3=2
221 216 163 220 mp2an 3+2-3=2
222 219 221 eqtr3i 53=2
223 222 negeqi 53=2
224 214 217 223 3eqtr2i 4-1-5=2
225 224 oveq1i 4-1-56=26
226 divneg 266026=26
227 163 177 171 226 mp3an 26=26
228 225 227 eqtr4i 4-1-56=26
229 228 fveq2i 4-1-56=26
230 172 91 183 ltleii 261
231 172 91 lenegi 261126
232 230 231 mpbi 126
233 170 172 ltnegi 0<2626<0
234 174 233 mpbi 26<0
235 neg0 0=0
236 1pneg1e0 1+-1=0
237 235 236 eqtr4i 0=1+-1
238 neg1cn 1
239 238 164 addcomi -1+1=1+-1
240 237 239 eqtr4i 0=-1+1
241 234 240 breqtri 26<-1+1
242 172 renegcli 26
243 neg1z 1
244 flbi 26126=112626<-1+1
245 242 243 244 mp2an 26=112626<-1+1
246 232 241 245 mpbir2an 26=1
247 229 246 eqtri 4-1-56=1
248 247 oveq2i N564-1-56=N56-1
249 73 flcld N3NN56
250 249 zcnd N3NN56
251 subneg N561N56-1=N56+1
252 250 164 251 sylancl N3NN56-1=N56+1
253 248 252 eqtrid N3NN564-1-56=N56+1
254 213 253 eqtrd N3Nk4N|kmod6=5=N56+1
255 196 254 oveq12d N3Nk4N|kmod6=1+k4N|kmod6=5=N16+N56+1
256 138 255 eqtrid N3Nk4N|kmod615=N16+N56+1
257 82 recnd N3NN
258 257 2timesd N3N2 N=N+N
259 df-6 6=5+1
260 215 164 addcomi 5+1=1+5
261 259 260 eqtri 6=1+5
262 261 a1i N3N6=1+5
263 258 262 oveq12d N3N2 N6=N+N-1+5
264 addsub4 NN15N+N-1+5=N1+N-5
265 164 215 264 mpanr12 NNN+N-1+5=N1+N-5
266 257 257 265 syl2anc N3NN+N-1+5=N1+N-5
267 263 266 eqtrd N3N2 N6=N1+N-5
268 267 oveq1d N3N2 N66=N1+N-56
269 mulcl 2N2 N
270 163 257 269 sylancr N3N2 N
271 177 171 pm3.2i 660
272 divsubdir 2 N66602 N66=2 N666
273 177 271 272 mp3an23 2 N2 N66=2 N666
274 270 273 syl N3N2 N66=2 N666
275 3t2e6 32=6
276 216 163 mulcomi 32=23
277 275 276 eqtr3i 6=23
278 277 oveq2i 2 N6=2 N23
279 3ne0 30
280 216 279 pm3.2i 330
281 2cnne0 220
282 divcan5 N3302202 N23=N3
283 280 281 282 mp3an23 N2 N23=N3
284 257 283 syl N3N2 N23=N3
285 278 284 eqtrid N3N2 N6=N3
286 177 171 dividi 66=1
287 286 a1i N3N66=1
288 285 287 oveq12d N3N2 N666=N31
289 274 288 eqtrd N3N2 N66=N31
290 79 recnd N3NN1
291 84 recnd N3NN5
292 divdir N1N5660N1+N-56=N16+N56
293 271 292 mp3an3 N1N5N1+N-56=N16+N56
294 290 291 293 syl2anc N3NN1+N-56=N16+N56
295 268 289 294 3eqtr3d N3NN31=N16+N56
296 295 oveq1d N3NN3-1+1=N16+N56+1
297 21 recnd N3NN3
298 npcan N31N3-1+1=N3
299 297 164 298 sylancl N3NN3-1+1=N3
300 81 recnd N3NN16
301 86 recnd N3NN56
302 164 a1i N3N1
303 300 301 302 addassd N3NN16+N56+1=N16+N56+1
304 296 299 303 3eqtr3d N3NN3=N16+N56+1
305 113 256 304 3brtr4d N3Nk4N|kmod615N3
306 9 17 21 59 305 letrd N3Nπ_N2N3
307 7 a1i N3N2
308 6 307 21 lesubaddd N3Nπ_N2N3π_NN3+2
309 306 308 mpbid N3Nπ_NN3+2
310 309 adantlr N0N3Nπ_NN3+2
311 5 ad2antrr N0NN3π_N
312 7 a1i N0NN32
313 20 ad2antrr N0NN3N3
314 readdcl N32N3+2
315 313 7 314 sylancl N0NN3N3+2
316 ppiwordi N3N3π_Nπ_3
317 1 316 mp3an2 NN3π_Nπ_3
318 317 adantlr N0NN3π_Nπ_3
319 318 24 breqtrdi N0NN3π_N2
320 3pos 0<3
321 divge0 N0N30<30N3
322 1 320 321 mpanr12 N0N0N3
323 322 adantr N0NN30N3
324 addge02 2N30N32N3+2
325 7 313 324 sylancr N0NN30N32N3+2
326 323 325 mpbid N0NN32N3+2
327 311 312 315 319 326 letrd N0NN3π_NN3+2
328 2 3 310 327 lecasei N0Nπ_NN3+2