Metamath Proof Explorer


Theorem psgnunilem2

Description: Lemma for psgnuni . Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses psgnunilem2.g G=SymGrpD
psgnunilem2.t T=ranpmTrspD
psgnunilem2.d φDV
psgnunilem2.w φWWordT
psgnunilem2.id φGW=ID
psgnunilem2.l φW=L
psgnunilem2.ix φI0..^L
psgnunilem2.a φAdomWII
psgnunilem2.al φk0..^I¬AdomWkI
psgnunilem2.in φ¬xWordTx=L2Gx=ID
Assertion psgnunilem2 φwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI

Proof

Step Hyp Ref Expression
1 psgnunilem2.g G=SymGrpD
2 psgnunilem2.t T=ranpmTrspD
3 psgnunilem2.d φDV
4 psgnunilem2.w φWWordT
5 psgnunilem2.id φGW=ID
6 psgnunilem2.l φW=L
7 psgnunilem2.ix φI0..^L
8 psgnunilem2.a φAdomWII
9 psgnunilem2.al φk0..^I¬AdomWkI
10 psgnunilem2.in φ¬xWordTx=L2Gx=ID
11 wrd0 WordT
12 splcl WWordTWordTWspliceII+2WordT
13 4 11 12 sylancl φWspliceII+2WordT
14 13 adantr φWIWI+1=IDWspliceII+2WordT
15 fzossfz 0..^L0L
16 15 7 sselid φI0L
17 elfznn0 I0LI0
18 16 17 syl φI0
19 2nn0 20
20 nn0addcl I020I+20
21 18 19 20 sylancl φI+20
22 18 nn0red φI
23 nn0addge1 I20II+2
24 22 19 23 sylancl φII+2
25 elfz2nn0 I0I+2I0I+20II+2
26 18 21 24 25 syl3anbrc φI0I+2
27 1 2 3 4 5 6 7 8 9 psgnunilem5 φI+10..^L
28 fzofzp1 I+10..^LI+1+10L
29 27 28 syl φI+1+10L
30 df-2 2=1+1
31 30 oveq2i I+2=I+1+1
32 18 nn0cnd φI
33 1cnd φ1
34 32 33 33 addassd φI+1+1=I+1+1
35 31 34 eqtr4id φI+2=I+1+1
36 6 oveq2d φ0W=0L
37 29 35 36 3eltr4d φI+20W
38 11 a1i φWordT
39 4 26 37 38 spllen φWspliceII+2=W+-I+2-I
40 hash0 =0
41 40 oveq1i I+2-I=0I+2-I
42 df-neg I+2-I=0I+2-I
43 41 42 eqtr4i I+2-I=I+2-I
44 2cn 2
45 pncan2 I2I+2-I=2
46 32 44 45 sylancl φI+2-I=2
47 46 negeqd φI+2-I=2
48 43 47 eqtrid φI+2-I=2
49 6 48 oveq12d φW+-I+2-I=L+-2
50 elfzel2 I0LL
51 16 50 syl φL
52 51 zcnd φL
53 negsub L2L+-2=L2
54 52 44 53 sylancl φL+-2=L2
55 39 49 54 3eqtrd φWspliceII+2=L2
56 55 adantr φWIWI+1=IDWspliceII+2=L2
57 splid WWordTI0I+2I+20WWspliceII+2WsubstrII+2=W
58 4 26 37 57 syl12anc φWspliceII+2WsubstrII+2=W
59 58 oveq2d φGWspliceII+2WsubstrII+2=GW
60 59 adantr φWIWI+1=IDGWspliceII+2WsubstrII+2=GW
61 eqid BaseG=BaseG
62 1 symggrp DVGGrp
63 3 62 syl φGGrp
64 63 grpmndd φGMnd
65 64 adantr φWIWI+1=IDGMnd
66 2 1 61 symgtrf TBaseG
67 sswrd TBaseGWordTWordBaseG
68 66 67 ax-mp WordTWordBaseG
69 68 4 sselid φWWordBaseG
70 69 adantr φWIWI+1=IDWWordBaseG
71 26 adantr φWIWI+1=IDI0I+2
72 37 adantr φWIWI+1=IDI+20W
73 swrdcl WWordBaseGWsubstrII+2WordBaseG
74 69 73 syl φWsubstrII+2WordBaseG
75 74 adantr φWIWI+1=IDWsubstrII+2WordBaseG
76 wrd0 WordBaseG
77 76 a1i φWIWI+1=IDWordBaseG
78 6 oveq2d φ0..^W=0..^L
79 27 78 eleqtrrd φI+10..^W
80 swrds2 WWordTI0I+10..^WWsubstrII+2=⟨“WIWI+1”⟩
81 4 18 79 80 syl3anc φWsubstrII+2=⟨“WIWI+1”⟩
82 81 oveq2d φGWsubstrII+2=G⟨“WIWI+1”⟩
83 wrdf WWordTW:0..^WT
84 4 83 syl φW:0..^WT
85 78 feq2d φW:0..^WTW:0..^LT
86 84 85 mpbid φW:0..^LT
87 86 7 ffvelcdmd φWIT
88 66 87 sselid φWIBaseG
89 86 27 ffvelcdmd φWI+1T
90 66 89 sselid φWI+1BaseG
91 eqid +G=+G
92 61 91 gsumws2 GMndWIBaseGWI+1BaseGG⟨“WIWI+1”⟩=WI+GWI+1
93 64 88 90 92 syl3anc φG⟨“WIWI+1”⟩=WI+GWI+1
94 1 61 91 symgov WIBaseGWI+1BaseGWI+GWI+1=WIWI+1
95 88 90 94 syl2anc φWI+GWI+1=WIWI+1
96 82 93 95 3eqtrd φGWsubstrII+2=WIWI+1
97 96 adantr φWIWI+1=IDGWsubstrII+2=WIWI+1
98 simpr φWIWI+1=IDWIWI+1=ID
99 1 symgid DVID=0G
100 3 99 syl φID=0G
101 eqid 0G=0G
102 101 gsum0 G=0G
103 100 102 eqtr4di φID=G
104 103 adantr φWIWI+1=IDID=G
105 97 98 104 3eqtrd φWIWI+1=IDGWsubstrII+2=G
106 61 65 70 71 72 75 77 105 gsumspl φWIWI+1=IDGWspliceII+2WsubstrII+2=GWspliceII+2
107 5 adantr φWIWI+1=IDGW=ID
108 60 106 107 3eqtr3d φWIWI+1=IDGWspliceII+2=ID
109 fveqeq2 x=WspliceII+2x=L2WspliceII+2=L2
110 oveq2 x=WspliceII+2Gx=GWspliceII+2
111 110 eqeq1d x=WspliceII+2Gx=IDGWspliceII+2=ID
112 109 111 anbi12d x=WspliceII+2x=L2Gx=IDWspliceII+2=L2GWspliceII+2=ID
113 112 rspcev WspliceII+2WordTWspliceII+2=L2GWspliceII+2=IDxWordTx=L2Gx=ID
114 14 56 108 113 syl12anc φWIWI+1=IDxWordTx=L2Gx=ID
115 10 adantr φWIWI+1=ID¬xWordTx=L2Gx=ID
116 114 115 pm2.21dd φWIWI+1=IDwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI
117 116 ex φWIWI+1=IDwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI
118 4 adantr φrTsTWWordT
119 simprl φrTsTrT
120 simprr φrTsTsT
121 119 120 s2cld φrTsT⟨“rs”⟩WordT
122 splcl WWordT⟨“rs”⟩WordTWspliceII+2⟨“rs”⟩WordT
123 118 121 122 syl2anc φrTsTWspliceII+2⟨“rs”⟩WordT
124 123 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrIWspliceII+2⟨“rs”⟩WordT
125 64 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIGMnd
126 69 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIWWordBaseG
127 26 adantr φrTsTWIWI+1=rsAdomsI¬AdomrII0I+2
128 37 adantr φrTsTWIWI+1=rsAdomsI¬AdomrII+20W
129 68 121 sselid φrTsT⟨“rs”⟩WordBaseG
130 129 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrI⟨“rs”⟩WordBaseG
131 74 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIWsubstrII+2WordBaseG
132 simprr1 φrTsTWIWI+1=rsAdomsI¬AdomrIWIWI+1=rs
133 96 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIGWsubstrII+2=WIWI+1
134 64 adantr φrTsTGMnd
135 66 a1i φTBaseG
136 135 sselda φrTrBaseG
137 136 adantrr φrTsTrBaseG
138 135 sselda φsTsBaseG
139 138 adantrl φrTsTsBaseG
140 61 91 gsumws2 GMndrBaseGsBaseGG⟨“rs”⟩=r+Gs
141 134 137 139 140 syl3anc φrTsTG⟨“rs”⟩=r+Gs
142 1 61 91 symgov rBaseGsBaseGr+Gs=rs
143 137 139 142 syl2anc φrTsTr+Gs=rs
144 141 143 eqtrd φrTsTG⟨“rs”⟩=rs
145 144 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrIG⟨“rs”⟩=rs
146 132 133 145 3eqtr4rd φrTsTWIWI+1=rsAdomsI¬AdomrIG⟨“rs”⟩=GWsubstrII+2
147 61 125 126 127 128 130 131 146 gsumspl φrTsTWIWI+1=rsAdomsI¬AdomrIGWspliceII+2⟨“rs”⟩=GWspliceII+2WsubstrII+2
148 59 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIGWspliceII+2WsubstrII+2=GW
149 5 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIGW=ID
150 147 148 149 3eqtrd φrTsTWIWI+1=rsAdomsI¬AdomrIGWspliceII+2⟨“rs”⟩=ID
151 26 adantr φrTsTI0I+2
152 37 adantr φrTsTI+20W
153 118 151 152 121 spllen φrTsTWspliceII+2⟨“rs”⟩=W+⟨“rs”⟩-I+2-I
154 s2len ⟨“rs”⟩=2
155 154 oveq1i ⟨“rs”⟩I+2-I=2I+2-I
156 46 oveq2d φ2I+2-I=22
157 44 subidi 22=0
158 156 157 eqtrdi φ2I+2-I=0
159 155 158 eqtrid φ⟨“rs”⟩I+2-I=0
160 159 oveq2d φW+⟨“rs”⟩-I+2-I=W+0
161 6 52 eqeltrd φW
162 161 addridd φW+0=W
163 160 162 6 3eqtrd φW+⟨“rs”⟩-I+2-I=L
164 163 adantr φrTsTW+⟨“rs”⟩-I+2-I=L
165 153 164 eqtrd φrTsTWspliceII+2⟨“rs”⟩=L
166 165 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrIWspliceII+2⟨“rs”⟩=L
167 150 166 jca φrTsTWIWI+1=rsAdomsI¬AdomrIGWspliceII+2⟨“rs”⟩=IDWspliceII+2⟨“rs”⟩=L
168 27 adantr φrTsTWIWI+1=rsAdomsI¬AdomrII+10..^L
169 simprr2 φrTsTWIWI+1=rsAdomsI¬AdomrIAdomsI
170 1nn0 10
171 2nn 2
172 1lt2 1<2
173 elfzo0 10..^21021<2
174 170 171 172 173 mpbir3an 10..^2
175 154 oveq2i 0..^⟨“rs”⟩=0..^2
176 174 175 eleqtrri 10..^⟨“rs”⟩
177 176 a1i φrTsT10..^⟨“rs”⟩
178 118 151 152 121 177 splfv2a φrTsTWspliceII+2⟨“rs”⟩I+1=⟨“rs”⟩1
179 s2fv1 sT⟨“rs”⟩1=s
180 179 ad2antll φrTsT⟨“rs”⟩1=s
181 178 180 eqtrd φrTsTWspliceII+2⟨“rs”⟩I+1=s
182 181 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrIWspliceII+2⟨“rs”⟩I+1=s
183 182 difeq1d φrTsTWIWI+1=rsAdomsI¬AdomrIWspliceII+2⟨“rs”⟩I+1I=sI
184 183 dmeqd φrTsTWIWI+1=rsAdomsI¬AdomrIdomWspliceII+2⟨“rs”⟩I+1I=domsI
185 169 184 eleqtrrd φrTsTWIWI+1=rsAdomsI¬AdomrIAdomWspliceII+2⟨“rs”⟩I+1I
186 fzosplitsni I0j0..^I+1j0..^Ij=I
187 nn0uz 0=0
188 186 187 eleq2s I0j0..^I+1j0..^Ij=I
189 18 188 syl φj0..^I+1j0..^Ij=I
190 189 adantr φrTsTWIWI+1=rsAdomsI¬AdomrIj0..^I+1j0..^Ij=I
191 fveq2 k=jWk=Wj
192 191 difeq1d k=jWkI=WjI
193 192 dmeqd k=jdomWkI=domWjI
194 193 eleq2d k=jAdomWkIAdomWjI
195 194 notbid k=j¬AdomWkI¬AdomWjI
196 195 rspccva k0..^I¬AdomWkIj0..^I¬AdomWjI
197 9 196 sylan φj0..^I¬AdomWjI
198 197 adantlr φrTsTj0..^I¬AdomWjI
199 4 ad2antrr φrTsTj0..^IWWordT
200 26 ad2antrr φrTsTj0..^II0I+2
201 37 ad2antrr φrTsTj0..^II+20W
202 121 adantr φrTsTj0..^I⟨“rs”⟩WordT
203 simpr φrTsTj0..^Ij0..^I
204 199 200 201 202 203 splfv1 φrTsTj0..^IWspliceII+2⟨“rs”⟩j=Wj
205 204 difeq1d φrTsTj0..^IWspliceII+2⟨“rs”⟩jI=WjI
206 205 dmeqd φrTsTj0..^IdomWspliceII+2⟨“rs”⟩jI=domWjI
207 198 206 neleqtrrd φrTsTj0..^I¬AdomWspliceII+2⟨“rs”⟩jI
208 207 ex φrTsTj0..^I¬AdomWspliceII+2⟨“rs”⟩jI
209 208 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrIj0..^I¬AdomWspliceII+2⟨“rs”⟩jI
210 simprr3 φrTsTWIWI+1=rsAdomsI¬AdomrI¬AdomrI
211 0nn0 00
212 2pos 0<2
213 elfzo0 00..^20020<2
214 211 171 212 213 mpbir3an 00..^2
215 214 175 eleqtrri 00..^⟨“rs”⟩
216 215 a1i φrTsT00..^⟨“rs”⟩
217 118 151 152 121 216 splfv2a φrTsTWspliceII+2⟨“rs”⟩I+0=⟨“rs”⟩0
218 32 addridd φI+0=I
219 218 adantr φrTsTI+0=I
220 219 fveq2d φrTsTWspliceII+2⟨“rs”⟩I+0=WspliceII+2⟨“rs”⟩I
221 s2fv0 rT⟨“rs”⟩0=r
222 221 ad2antrl φrTsT⟨“rs”⟩0=r
223 217 220 222 3eqtr3d φrTsTWspliceII+2⟨“rs”⟩I=r
224 223 difeq1d φrTsTWspliceII+2⟨“rs”⟩II=rI
225 224 dmeqd φrTsTdomWspliceII+2⟨“rs”⟩II=domrI
226 225 eleq2d φrTsTAdomWspliceII+2⟨“rs”⟩IIAdomrI
227 226 adantrr φrTsTWIWI+1=rsAdomsI¬AdomrIAdomWspliceII+2⟨“rs”⟩IIAdomrI
228 210 227 mtbird φrTsTWIWI+1=rsAdomsI¬AdomrI¬AdomWspliceII+2⟨“rs”⟩II
229 fveq2 j=IWspliceII+2⟨“rs”⟩j=WspliceII+2⟨“rs”⟩I
230 229 difeq1d j=IWspliceII+2⟨“rs”⟩jI=WspliceII+2⟨“rs”⟩II
231 230 dmeqd j=IdomWspliceII+2⟨“rs”⟩jI=domWspliceII+2⟨“rs”⟩II
232 231 eleq2d j=IAdomWspliceII+2⟨“rs”⟩jIAdomWspliceII+2⟨“rs”⟩II
233 232 notbid j=I¬AdomWspliceII+2⟨“rs”⟩jI¬AdomWspliceII+2⟨“rs”⟩II
234 228 233 syl5ibrcom φrTsTWIWI+1=rsAdomsI¬AdomrIj=I¬AdomWspliceII+2⟨“rs”⟩jI
235 209 234 jaod φrTsTWIWI+1=rsAdomsI¬AdomrIj0..^Ij=I¬AdomWspliceII+2⟨“rs”⟩jI
236 190 235 sylbid φrTsTWIWI+1=rsAdomsI¬AdomrIj0..^I+1¬AdomWspliceII+2⟨“rs”⟩jI
237 236 ralrimiv φrTsTWIWI+1=rsAdomsI¬AdomrIj0..^I+1¬AdomWspliceII+2⟨“rs”⟩jI
238 168 185 237 3jca φrTsTWIWI+1=rsAdomsI¬AdomrII+10..^LAdomWspliceII+2⟨“rs”⟩I+1Ij0..^I+1¬AdomWspliceII+2⟨“rs”⟩jI
239 oveq2 w=WspliceII+2⟨“rs”⟩Gw=GWspliceII+2⟨“rs”⟩
240 239 eqeq1d w=WspliceII+2⟨“rs”⟩Gw=IDGWspliceII+2⟨“rs”⟩=ID
241 fveqeq2 w=WspliceII+2⟨“rs”⟩w=LWspliceII+2⟨“rs”⟩=L
242 240 241 anbi12d w=WspliceII+2⟨“rs”⟩Gw=IDw=LGWspliceII+2⟨“rs”⟩=IDWspliceII+2⟨“rs”⟩=L
243 fveq1 w=WspliceII+2⟨“rs”⟩wI+1=WspliceII+2⟨“rs”⟩I+1
244 243 difeq1d w=WspliceII+2⟨“rs”⟩wI+1I=WspliceII+2⟨“rs”⟩I+1I
245 244 dmeqd w=WspliceII+2⟨“rs”⟩domwI+1I=domWspliceII+2⟨“rs”⟩I+1I
246 245 eleq2d w=WspliceII+2⟨“rs”⟩AdomwI+1IAdomWspliceII+2⟨“rs”⟩I+1I
247 fveq1 w=WspliceII+2⟨“rs”⟩wj=WspliceII+2⟨“rs”⟩j
248 247 difeq1d w=WspliceII+2⟨“rs”⟩wjI=WspliceII+2⟨“rs”⟩jI
249 248 dmeqd w=WspliceII+2⟨“rs”⟩domwjI=domWspliceII+2⟨“rs”⟩jI
250 249 eleq2d w=WspliceII+2⟨“rs”⟩AdomwjIAdomWspliceII+2⟨“rs”⟩jI
251 250 notbid w=WspliceII+2⟨“rs”⟩¬AdomwjI¬AdomWspliceII+2⟨“rs”⟩jI
252 251 ralbidv w=WspliceII+2⟨“rs”⟩j0..^I+1¬AdomwjIj0..^I+1¬AdomWspliceII+2⟨“rs”⟩jI
253 246 252 3anbi23d w=WspliceII+2⟨“rs”⟩I+10..^LAdomwI+1Ij0..^I+1¬AdomwjII+10..^LAdomWspliceII+2⟨“rs”⟩I+1Ij0..^I+1¬AdomWspliceII+2⟨“rs”⟩jI
254 242 253 anbi12d w=WspliceII+2⟨“rs”⟩Gw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjIGWspliceII+2⟨“rs”⟩=IDWspliceII+2⟨“rs”⟩=LI+10..^LAdomWspliceII+2⟨“rs”⟩I+1Ij0..^I+1¬AdomWspliceII+2⟨“rs”⟩jI
255 254 rspcev WspliceII+2⟨“rs”⟩WordTGWspliceII+2⟨“rs”⟩=IDWspliceII+2⟨“rs”⟩=LI+10..^LAdomWspliceII+2⟨“rs”⟩I+1Ij0..^I+1¬AdomWspliceII+2⟨“rs”⟩jIwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI
256 124 167 238 255 syl12anc φrTsTWIWI+1=rsAdomsI¬AdomrIwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI
257 256 expr φrTsTWIWI+1=rsAdomsI¬AdomrIwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI
258 257 rexlimdvva φrTsTWIWI+1=rsAdomsI¬AdomrIwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI
259 2 3 87 89 8 psgnunilem1 φWIWI+1=IDrTsTWIWI+1=rsAdomsI¬AdomrI
260 117 258 259 mpjaod φwWordTGw=IDw=LI+10..^LAdomwI+1Ij0..^I+1¬AdomwjI