Metamath Proof Explorer


Theorem ptcmplem2

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 S=kA,uFkwXwk-1u
ptcmp.2 X=nAFn
ptcmp.3 φAV
ptcmp.4 φF:AComp
ptcmp.5 φXUFLdomcard
ptcmplem2.5 φUranS
ptcmplem2.6 φX=U
ptcmplem2.7 φ¬z𝒫UFinX=z
Assertion ptcmplem2 φknA|¬Fn1𝑜Fkdomcard

Proof

Step Hyp Ref Expression
1 ptcmp.1 S=kA,uFkwXwk-1u
2 ptcmp.2 X=nAFn
3 ptcmp.3 φAV
4 ptcmp.4 φF:AComp
5 ptcmp.5 φXUFLdomcard
6 ptcmplem2.5 φUranS
7 ptcmplem2.6 φX=U
8 ptcmplem2.7 φ¬z𝒫UFinX=z
9 0ss U
10 0fin Fin
11 elfpw 𝒫UFinUFin
12 9 10 11 mpbir2an 𝒫UFin
13 unieq z=z=
14 uni0 =
15 13 14 eqtrdi z=z=
16 15 rspceeqv 𝒫UFinX=z𝒫UFinX=z
17 12 16 mpan X=z𝒫UFinX=z
18 17 necon3bi ¬z𝒫UFinX=zX
19 8 18 syl φX
20 n0 XffX
21 19 20 sylib φffX
22 fveq2 n=kFn=Fk
23 22 unieqd n=kFn=Fk
24 23 cbvixpv nAFn=kAFk
25 2 24 eqtri X=kAFk
26 5 elin2d φXdomcard
27 26 adantr φfXXdomcard
28 25 27 eqeltrrid φfXkAFkdomcard
29 ssrab2 nA|¬Fn1𝑜A
30 19 adantr φfXX
31 25 30 eqnetrrid φfXkAFk
32 eqid gkAFkgnA|¬Fn1𝑜=gkAFkgnA|¬Fn1𝑜
33 32 resixpfo nA|¬Fn1𝑜AkAFkgkAFkgnA|¬Fn1𝑜:kAFkontoknA|¬Fn1𝑜Fk
34 29 31 33 sylancr φfXgkAFkgnA|¬Fn1𝑜:kAFkontoknA|¬Fn1𝑜Fk
35 fonum kAFkdomcardgkAFkgnA|¬Fn1𝑜:kAFkontoknA|¬Fn1𝑜FkknA|¬Fn1𝑜Fkdomcard
36 28 34 35 syl2anc φfXknA|¬Fn1𝑜Fkdomcard
37 vex gV
38 difexg gVgfV
39 37 38 mp1i φfXgfV
40 dmexg gfVdomgfV
41 uniexg domgfVdomgfV
42 39 40 41 3syl φfXdomgfV
43 42 ralrimivw φfXgXdomgfV
44 eqid gXdomgf=gXdomgf
45 44 fnmpt gXdomgfVgXdomgfFnX
46 43 45 syl φfXgXdomgfFnX
47 dffn4 gXdomgfFnXgXdomgf:XontorangXdomgf
48 46 47 sylib φfXgXdomgf:XontorangXdomgf
49 fonum XdomcardgXdomgf:XontorangXdomgfrangXdomgfdomcard
50 27 48 49 syl2anc φfXrangXdomgfdomcard
51 ssdif0 FkfkFkfk=
52 simpr φfXkAFkfkFkfk
53 simpr φfXfX
54 53 25 eleqtrdi φfXfkAFk
55 vex fV
56 55 elixp fkAFkfFnAkAfkFk
57 56 simprbi fkAFkkAfkFk
58 54 57 syl φfXkAfkFk
59 58 r19.21bi φfXkAfkFk
60 59 snssd φfXkAfkFk
61 60 adantr φfXkAFkfkfkFk
62 52 61 eqssd φfXkAFkfkFk=fk
63 fvex fkV
64 63 ensn1 fk1𝑜
65 62 64 eqbrtrdi φfXkAFkfkFk1𝑜
66 65 ex φfXkAFkfkFk1𝑜
67 51 66 biimtrrid φfXkAFkfk=Fk1𝑜
68 67 con3d φfXkA¬Fk1𝑜¬Fkfk=
69 neq0 ¬Fkfk=xxFkfk
70 68 69 imbitrdi φfXkA¬Fk1𝑜xxFkfk
71 eldifi xFkfkxFk
72 simplr φfXkAxFknAxFk
73 iftrue n=kifn=kxfn=x
74 73 23 eleq12d n=kifn=kxfnFnxFk
75 72 74 syl5ibrcom φfXkAxFknAn=kifn=kxfnFn
76 53 2 eleqtrdi φfXfnAFn
77 55 elixp fnAFnfFnAnAfnFn
78 77 simprbi fnAFnnAfnFn
79 76 78 syl φfXnAfnFn
80 79 ad2antrr φfXkAxFknAfnFn
81 80 r19.21bi φfXkAxFknAfnFn
82 iffalse ¬n=kifn=kxfn=fn
83 82 eleq1d ¬n=kifn=kxfnFnfnFn
84 81 83 syl5ibrcom φfXkAxFknA¬n=kifn=kxfnFn
85 75 84 pm2.61d φfXkAxFknAifn=kxfnFn
86 85 ralrimiva φfXkAxFknAifn=kxfnFn
87 3 ad3antrrr φfXkAxFkAV
88 mptelixpg AVnAifn=kxfnnAFnnAifn=kxfnFn
89 87 88 syl φfXkAxFknAifn=kxfnnAFnnAifn=kxfnFn
90 86 89 mpbird φfXkAxFknAifn=kxfnnAFn
91 90 2 eleqtrrdi φfXkAxFknAifn=kxfnX
92 71 91 sylan2 φfXkAxFkfknAifn=kxfnX
93 unisnv k=k
94 simplr φfXkAxFkfkkA
95 eleq1w m=kmAkA
96 94 95 syl5ibrcom φfXkAxFkfkm=kmA
97 96 pm4.71rd φfXkAxFkfkm=kmAm=k
98 equequ1 n=mn=km=k
99 fveq2 n=mfn=fm
100 98 99 ifbieq2d n=mifn=kxfn=ifm=kxfm
101 eqid nAifn=kxfn=nAifn=kxfn
102 vex xV
103 fvex fmV
104 102 103 ifex ifm=kxfmV
105 100 101 104 fvmpt mAnAifn=kxfnm=ifm=kxfm
106 105 neeq1d mAnAifn=kxfnmfmifm=kxfmfm
107 106 adantl φfXkAxFkfkmAnAifn=kxfnmfmifm=kxfmfm
108 iffalse ¬m=kifm=kxfm=fm
109 108 necon1ai ifm=kxfmfmm=k
110 eldifsni xFkfkxfk
111 110 ad2antlr φfXkAxFkfkmAxfk
112 iftrue m=kifm=kxfm=x
113 fveq2 m=kfm=fk
114 112 113 neeq12d m=kifm=kxfmfmxfk
115 111 114 syl5ibrcom φfXkAxFkfkmAm=kifm=kxfmfm
116 109 115 impbid2 φfXkAxFkfkmAifm=kxfmfmm=k
117 107 116 bitrd φfXkAxFkfkmAnAifn=kxfnmfmm=k
118 117 pm5.32da φfXkAxFkfkmAnAifn=kxfnmfmmAm=k
119 97 118 bitr4d φfXkAxFkfkm=kmAnAifn=kxfnmfm
120 119 abbidv φfXkAxFkfkm|m=k=m|mAnAifn=kxfnmfm
121 df-sn k=m|m=k
122 df-rab mA|nAifn=kxfnmfm=m|mAnAifn=kxfnmfm
123 120 121 122 3eqtr4g φfXkAxFkfkk=mA|nAifn=kxfnmfm
124 fvex fnV
125 102 124 ifex ifn=kxfnV
126 125 rgenw nAifn=kxfnV
127 101 fnmpt nAifn=kxfnVnAifn=kxfnFnA
128 126 127 mp1i φfXkAxFkfknAifn=kxfnFnA
129 ixpfn fnAFnfFnA
130 76 129 syl φfXfFnA
131 130 ad2antrr φfXkAxFkfkfFnA
132 fndmdif nAifn=kxfnFnAfFnAdomnAifn=kxfnf=mA|nAifn=kxfnmfm
133 128 131 132 syl2anc φfXkAxFkfkdomnAifn=kxfnf=mA|nAifn=kxfnmfm
134 123 133 eqtr4d φfXkAxFkfkk=domnAifn=kxfnf
135 134 unieqd φfXkAxFkfkk=domnAifn=kxfnf
136 93 135 eqtr3id φfXkAxFkfkk=domnAifn=kxfnf
137 difeq1 g=nAifn=kxfngf=nAifn=kxfnf
138 137 dmeqd g=nAifn=kxfndomgf=domnAifn=kxfnf
139 138 unieqd g=nAifn=kxfndomgf=domnAifn=kxfnf
140 139 rspceeqv nAifn=kxfnXk=domnAifn=kxfnfgXk=domgf
141 92 136 140 syl2anc φfXkAxFkfkgXk=domgf
142 141 ex φfXkAxFkfkgXk=domgf
143 142 exlimdv φfXkAxxFkfkgXk=domgf
144 70 143 syld φfXkA¬Fk1𝑜gXk=domgf
145 144 expimpd φfXkA¬Fk1𝑜gXk=domgf
146 23 breq1d n=kFn1𝑜Fk1𝑜
147 146 notbid n=k¬Fn1𝑜¬Fk1𝑜
148 147 elrab knA|¬Fn1𝑜kA¬Fk1𝑜
149 44 elrnmpt kVkrangXdomgfgXk=domgf
150 149 elv krangXdomgfgXk=domgf
151 145 148 150 3imtr4g φfXknA|¬Fn1𝑜krangXdomgf
152 151 ssrdv φfXnA|¬Fn1𝑜rangXdomgf
153 ssnum rangXdomgfdomcardnA|¬Fn1𝑜rangXdomgfnA|¬Fn1𝑜domcard
154 50 152 153 syl2anc φfXnA|¬Fn1𝑜domcard
155 xpnum knA|¬Fn1𝑜FkdomcardnA|¬Fn1𝑜domcardknA|¬Fn1𝑜Fk×nA|¬Fn1𝑜domcard
156 36 154 155 syl2anc φfXknA|¬Fn1𝑜Fk×nA|¬Fn1𝑜domcard
157 3 adantr φfXAV
158 rabexg AVnA|¬Fn1𝑜V
159 157 158 syl φfXnA|¬Fn1𝑜V
160 fvex FkV
161 160 uniex FkV
162 161 rgenw knA|¬Fn1𝑜FkV
163 iunexg nA|¬Fn1𝑜VknA|¬Fn1𝑜FkVknA|¬Fn1𝑜FkV
164 159 162 163 sylancl φfXknA|¬Fn1𝑜FkV
165 resixp nA|¬Fn1𝑜AfkAFkfnA|¬Fn1𝑜knA|¬Fn1𝑜Fk
166 29 54 165 sylancr φfXfnA|¬Fn1𝑜knA|¬Fn1𝑜Fk
167 166 ne0d φfXknA|¬Fn1𝑜Fk
168 ixpiunwdom nA|¬Fn1𝑜VknA|¬Fn1𝑜FkVknA|¬Fn1𝑜FkknA|¬Fn1𝑜Fk*knA|¬Fn1𝑜Fk×nA|¬Fn1𝑜
169 159 164 167 168 syl3anc φfXknA|¬Fn1𝑜Fk*knA|¬Fn1𝑜Fk×nA|¬Fn1𝑜
170 numwdom knA|¬Fn1𝑜Fk×nA|¬Fn1𝑜domcardknA|¬Fn1𝑜Fk*knA|¬Fn1𝑜Fk×nA|¬Fn1𝑜knA|¬Fn1𝑜Fkdomcard
171 156 169 170 syl2anc φfXknA|¬Fn1𝑜Fkdomcard
172 21 171 exlimddv φknA|¬Fn1𝑜Fkdomcard