Metamath Proof Explorer


Theorem rrxcph

Description: Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses rrxval.r H=msup
rrxbase.b B=BaseH
Assertion rrxcph IVHCPreHil

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 rrxbase.b B=BaseH
3 1 rrxval IVH=toCPreHilfldfreeLModI
4 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
5 eqid BasefldfreeLModI=BasefldfreeLModI
6 eqid ScalarfldfreeLModI=ScalarfldfreeLModI
7 eqid fldfreeLModI=fldfreeLModI
8 rebase =Basefld
9 remulr ×=fld
10 eqid 𝑖fldfreeLModI=𝑖fldfreeLModI
11 eqid 0fldfreeLModI=0fldfreeLModI
12 re0g 0=0fld
13 refldcj *=*fld
14 refld fldField
15 14 a1i IVfldField
16 fconstmpt I×0=xI0
17 7 8 5 frlmbasf IVfBasefldfreeLModIf:I
18 17 ffnd IVfBasefldfreeLModIfFnI
19 18 3adant3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0fFnI
20 simpl IVfBasefldfreeLModIIV
21 14 a1i IVfBasefldfreeLModIfldField
22 simpr IVfBasefldfreeLModIfBasefldfreeLModI
23 7 8 9 5 10 frlmipval IVfldFieldfBasefldfreeLModIfBasefldfreeLModIf𝑖fldfreeLModIf=fldf×ff
24 20 21 22 22 23 syl22anc IVfBasefldfreeLModIf𝑖fldfreeLModIf=fldf×ff
25 inidm II=I
26 eqidd IVfBasefldfreeLModIxIfx=fx
27 18 18 20 20 25 26 26 offval IVfBasefldfreeLModIf×ff=xIfxfx
28 17 ffvelcdmda IVfBasefldfreeLModIxIfx
29 28 28 remulcld IVfBasefldfreeLModIxIfxfx
30 27 29 fmpt3d IVfBasefldfreeLModIf×ff:I
31 ovexd IVfBasefldfreeLModIf×ffV
32 30 ffund IVfBasefldfreeLModIFunf×ff
33 7 12 5 frlmbasfsupp IVfBasefldfreeLModIfinSupp0f
34 0red IVfBasefldfreeLModI0
35 simpr IVfBasefldfreeLModIxx
36 35 recnd IVfBasefldfreeLModIxx
37 36 mul02d IVfBasefldfreeLModIx0x=0
38 20 34 17 17 37 suppofss1d IVfBasefldfreeLModIf×ffsupp0fsupp0
39 fsuppsssupp f×ffVFunf×fffinSupp0ff×ffsupp0fsupp0finSupp0f×ff
40 31 32 33 38 39 syl22anc IVfBasefldfreeLModIfinSupp0f×ff
41 regsumsupp f×ff:IfinSupp0f×ffIVfldf×ff=xf×ffsupp0f×ffx
42 30 40 20 41 syl3anc IVfBasefldfreeLModIfldf×ff=xf×ffsupp0f×ffx
43 suppssdm fsupp0domf
44 43 17 fssdm IVfBasefldfreeLModIfsupp0I
45 38 44 sstrd IVfBasefldfreeLModIf×ffsupp0I
46 45 sselda IVfBasefldfreeLModIxsupp0f×ffxI
47 18 18 20 20 25 26 26 ofval IVfBasefldfreeLModIxIf×ffx=fxfx
48 46 47 syldan IVfBasefldfreeLModIxsupp0f×fff×ffx=fxfx
49 48 sumeq2dv IVfBasefldfreeLModIxf×ffsupp0f×ffx=xf×ffsupp0fxfx
50 42 49 eqtrd IVfBasefldfreeLModIfldf×ff=xf×ffsupp0fxfx
51 24 50 eqtrd IVfBasefldfreeLModIf𝑖fldfreeLModIf=xf×ffsupp0fxfx
52 51 3adant3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0f𝑖fldfreeLModIf=xf×ffsupp0fxfx
53 simp3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0f𝑖fldfreeLModIf=0
54 52 53 eqtr3d IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xf×ffsupp0fxfx=0
55 33 fsuppimpd IVfBasefldfreeLModIfsupp0Fin
56 55 38 ssfid IVfBasefldfreeLModIf×ffsupp0Fin
57 46 29 syldan IVfBasefldfreeLModIxsupp0f×fffxfx
58 28 msqge0d IVfBasefldfreeLModIxI0fxfx
59 46 58 syldan IVfBasefldfreeLModIxsupp0f×ff0fxfx
60 56 57 59 fsum00 IVfBasefldfreeLModIxf×ffsupp0fxfx=0xsupp0f×fffxfx=0
61 60 3adant3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xf×ffsupp0fxfx=0xsupp0f×fffxfx=0
62 54 61 mpbid IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xsupp0f×fffxfx=0
63 62 r19.21bi IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xsupp0f×fffxfx=0
64 63 adantlr IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxsupp0f×fffxfx=0
65 28 3adantl3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIfx
66 65 recnd IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIfx
67 66 66 mul0ord IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIfxfx=0fx=0fx=0
68 67 adantr IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxsupp0f×fffxfx=0fx=0fx=0
69 64 68 mpbid IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxsupp0f×fffx=0fx=0
70 oridm fx=0fx=0fx=0
71 69 70 sylib IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxsupp0f×fffx=0
72 30 3adant3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0f×ff:I
73 72 adantr IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ff:I
74 ssidd IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ffsupp0f×ffsupp0
75 simpl1 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIIV
76 0red IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xI0
77 73 74 75 76 suppssr IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxIsupp0f×fff×ffx=0
78 47 3adantl3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ffx=fxfx
79 78 eqeq1d IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ffx=0fxfx=0
80 79 67 bitrd IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ffx=0fx=0fx=0
81 80 70 bitrdi IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ffx=0fx=0
82 81 biimpa IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIf×ffx=0fx=0
83 77 82 syldan IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxIsupp0f×fffx=0
84 undif f×ffsupp0Isupp0f×ffIsupp0f×ff=I
85 45 84 sylib IVfBasefldfreeLModIsupp0f×ffIsupp0f×ff=I
86 85 eleq2d IVfBasefldfreeLModIxsupp0f×ffIsupp0f×ffxI
87 86 3adant3 IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xsupp0f×ffIsupp0f×ffxI
88 87 biimpar IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxsupp0f×ffIsupp0f×ff
89 elun xsupp0f×ffIsupp0f×ffxsupp0f×ffxIsupp0f×ff
90 88 89 sylib IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIxsupp0f×ffxIsupp0f×ff
91 71 83 90 mpjaodan IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIfx=0
92 91 ralrimiva IVfBasefldfreeLModIf𝑖fldfreeLModIf=0xIfx=0
93 fconstfv f:I0fFnIxIfx=0
94 c0ex 0V
95 94 fconst2 f:I0f=I×0
96 93 95 sylbb1 fFnIxIfx=0f=I×0
97 19 92 96 syl2anc IVfBasefldfreeLModIf𝑖fldfreeLModIf=0f=I×0
98 isfld fldFieldfldDivRingfldCRing
99 14 98 mpbi fldDivRingfldCRing
100 99 simpli fldDivRing
101 drngring fldDivRingfldRing
102 100 101 ax-mp fldRing
103 7 12 frlm0 fldRingIVI×0=0fldfreeLModI
104 102 103 mpan IVI×0=0fldfreeLModI
105 104 16 eqtr3di IV0fldfreeLModI=xI0
106 105 3ad2ant1 IVfBasefldfreeLModIf𝑖fldfreeLModIf=00fldfreeLModI=xI0
107 16 97 106 3eqtr4a IVfBasefldfreeLModIf𝑖fldfreeLModIf=0f=0fldfreeLModI
108 cjre xx=x
109 108 adantl IVxx=x
110 id IVIV
111 7 8 9 5 10 11 12 13 15 107 109 110 frlmphl IVfldfreeLModIPreHil
112 7 frlmsca fldFieldIVfld=ScalarfldfreeLModI
113 14 112 mpan IVfld=ScalarfldfreeLModI
114 df-refld fld=fld𝑠
115 113 114 eqtr3di IVScalarfldfreeLModI=fld𝑠
116 simpr1 IVff0ff
117 simpr3 IVff0f0f
118 116 117 resqrtcld IVff0ff
119 56 57 59 fsumge0 IVfBasefldfreeLModI0xf×ffsupp0fxfx
120 119 50 breqtrrd IVfBasefldfreeLModI0fldf×ff
121 120 24 breqtrrd IVfBasefldfreeLModI0f𝑖fldfreeLModIf
122 4 5 6 111 115 10 118 121 tcphcph IVtoCPreHilfldfreeLModICPreHil
123 3 122 eqeltrd IVHCPreHil