Metamath Proof Explorer


Theorem smatrcl

Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S=KsubMat1AL
smat.m φM
smat.n φN
smat.k φK1M
smat.l φL1N
smat.a φAB1M×1N
Assertion smatrcl φSB1M1×1N1

Proof

Step Hyp Ref Expression
1 smat.s S=KsubMat1AL
2 smat.m φM
3 smat.n φN
4 smat.k φK1M
5 smat.l φL1N
6 smat.a φAB1M×1N
7 elmapi AB1M×1NA:1M×1NB
8 ffun A:1M×1NBFunA
9 6 7 8 3syl φFunA
10 eqid i,jifi<Kii+1ifj<Ljj+1=i,jifi<Kii+1ifj<Ljj+1
11 10 mpofun Funi,jifi<Kii+1ifj<Ljj+1
12 11 a1i φFuni,jifi<Kii+1ifj<Ljj+1
13 funco FunAFuni,jifi<Kii+1ifj<Ljj+1FunAi,jifi<Kii+1ifj<Ljj+1
14 9 12 13 syl2anc φFunAi,jifi<Kii+1ifj<Ljj+1
15 fz1ssnn 1M
16 15 4 sselid φK
17 fz1ssnn 1N
18 17 5 sselid φL
19 smatfval KLAB1M×1NKsubMat1AL=Ai,jifi<Kii+1ifj<Ljj+1
20 16 18 6 19 syl3anc φKsubMat1AL=Ai,jifi<Kii+1ifj<Ljj+1
21 1 20 eqtrid φS=Ai,jifi<Kii+1ifj<Ljj+1
22 21 funeqd φFunSFunAi,jifi<Kii+1ifj<Ljj+1
23 14 22 mpbird φFunS
24 fdmrn FunSS:domSranS
25 23 24 sylib φS:domSranS
26 21 dmeqd φdomS=domAi,jifi<Kii+1ifj<Ljj+1
27 dmco domAi,jifi<Kii+1ifj<Ljj+1=i,jifi<Kii+1ifj<Ljj+1-1domA
28 fdm A:1M×1NBdomA=1M×1N
29 6 7 28 3syl φdomA=1M×1N
30 29 imaeq2d φi,jifi<Kii+1ifj<Ljj+1-1domA=i,jifi<Kii+1ifj<Ljj+1-11M×1N
31 30 eleq2d φxi,jifi<Kii+1ifj<Ljj+1-1domAxi,jifi<Kii+1ifj<Ljj+1-11M×1N
32 opex ifi<Kii+1ifj<Ljj+1V
33 10 32 fnmpoi i,jifi<Kii+1ifj<Ljj+1Fn×
34 elpreima i,jifi<Kii+1ifj<Ljj+1Fn×xi,jifi<Kii+1ifj<Ljj+1-11M×1Nx×i,jifi<Kii+1ifj<Ljj+1x1M×1N
35 33 34 ax-mp xi,jifi<Kii+1ifj<Ljj+1-11M×1Nx×i,jifi<Kii+1ifj<Ljj+1x1M×1N
36 35 a1i φxi,jifi<Kii+1ifj<Ljj+1-11M×1Nx×i,jifi<Kii+1ifj<Ljj+1x1M×1N
37 simplr φx=1stx2ndx1stx2ndxx=1stx2ndx
38 37 fveq2d φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x=i,jifi<Kii+1ifj<Ljj+11stx2ndx
39 df-ov 1stxi,jifi<Kii+1ifj<Ljj+12ndx=i,jifi<Kii+1ifj<Ljj+11stx2ndx
40 38 39 eqtr4di φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x=1stxi,jifi<Kii+1ifj<Ljj+12ndx
41 breq1 i=1stxi<K1stx<K
42 id i=1stxi=1stx
43 oveq1 i=1stxi+1=1stx+1
44 41 42 43 ifbieq12d i=1stxifi<Kii+1=if1stx<K1stx1stx+1
45 44 opeq1d i=1stxifi<Kii+1ifj<Ljj+1=if1stx<K1stx1stx+1ifj<Ljj+1
46 breq1 j=2ndxj<L2ndx<L
47 id j=2ndxj=2ndx
48 oveq1 j=2ndxj+1=2ndx+1
49 46 47 48 ifbieq12d j=2ndxifj<Ljj+1=if2ndx<L2ndx2ndx+1
50 49 opeq2d j=2ndxif1stx<K1stx1stx+1ifj<Ljj+1=if1stx<K1stx1stx+1if2ndx<L2ndx2ndx+1
51 opex if1stx<K1stx1stx+1if2ndx<L2ndx2ndx+1V
52 45 50 10 51 ovmpo 1stx2ndx1stxi,jifi<Kii+1ifj<Ljj+12ndx=if1stx<K1stx1stx+1if2ndx<L2ndx2ndx+1
53 52 adantl φx=1stx2ndx1stx2ndx1stxi,jifi<Kii+1ifj<Ljj+12ndx=if1stx<K1stx1stx+1if2ndx<L2ndx2ndx+1
54 40 53 eqtrd φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x=if1stx<K1stx1stx+1if2ndx<L2ndx2ndx+1
55 54 eleq1d φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1Nif1stx<K1stx1stx+1if2ndx<L2ndx2ndx+11M×1N
56 opelxp if1stx<K1stx1stx+1if2ndx<L2ndx2ndx+11M×1Nif1stx<K1stx1stx+11Mif2ndx<L2ndx2ndx+11N
57 55 56 bitrdi φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1Nif1stx<K1stx1stx+11Mif2ndx<L2ndx2ndx+11N
58 ifel if1stx<K1stx1stx+11M1stx<K1stx1M¬1stx<K1stx+11M
59 simplrl φx=1stx2ndx1stx2ndx1stx<K1stx
60 59 nnred φx=1stx2ndx1stx2ndx1stx<K1stx
61 16 nnred φK
62 61 ad3antrrr φx=1stx2ndx1stx2ndx1stx<KK
63 2 nnred φM
64 63 ad3antrrr φx=1stx2ndx1stx2ndx1stx<KM
65 simpr φx=1stx2ndx1stx2ndx1stx<K1stx<K
66 60 62 65 ltled φx=1stx2ndx1stx2ndx1stx<K1stxK
67 elfzle2 K1MKM
68 4 67 syl φKM
69 68 ad3antrrr φx=1stx2ndx1stx2ndx1stx<KKM
70 60 62 64 66 69 letrd φx=1stx2ndx1stx2ndx1stx<K1stxM
71 59 70 jca φx=1stx2ndx1stx2ndx1stx<K1stx1stxM
72 2 nnzd φM
73 fznn M1stx1M1stx1stxM
74 72 73 syl φ1stx1M1stx1stxM
75 74 ad3antrrr φx=1stx2ndx1stx2ndx1stx<K1stx1M1stx1stxM
76 71 75 mpbird φx=1stx2ndx1stx2ndx1stx<K1stx1M
77 60 62 64 65 69 ltletrd φx=1stx2ndx1stx2ndx1stx<K1stx<M
78 2 ad3antrrr φx=1stx2ndx1stx2ndx1stx<KM
79 nnltlem1 1stxM1stx<M1stxM1
80 59 78 79 syl2anc φx=1stx2ndx1stx2ndx1stx<K1stx<M1stxM1
81 77 80 mpbid φx=1stx2ndx1stx2ndx1stx<K1stxM1
82 76 81 2thd φx=1stx2ndx1stx2ndx1stx<K1stx1M1stxM1
83 82 pm5.32da φx=1stx2ndx1stx2ndx1stx<K1stx1M1stx<K1stxM1
84 fznn M1stx+11M1stx+11stx+1M
85 72 84 syl φ1stx+11M1stx+11stx+1M
86 85 ad2antrr φx=1stx2ndx1stx2ndx1stx+11M1stx+11stx+1M
87 simprl φx=1stx2ndx1stx2ndx1stx
88 87 peano2nnd φx=1stx2ndx1stx2ndx1stx+1
89 88 biantrurd φx=1stx2ndx1stx2ndx1stx+1M1stx+11stx+1M
90 87 nnzd φx=1stx2ndx1stx2ndx1stx
91 72 ad2antrr φx=1stx2ndx1stx2ndxM
92 zltp1le 1stxM1stx<M1stx+1M
93 zltlem1 1stxM1stx<M1stxM1
94 92 93 bitr3d 1stxM1stx+1M1stxM1
95 90 91 94 syl2anc φx=1stx2ndx1stx2ndx1stx+1M1stxM1
96 86 89 95 3bitr2d φx=1stx2ndx1stx2ndx1stx+11M1stxM1
97 96 anbi2d φx=1stx2ndx1stx2ndx¬1stx<K1stx+11M¬1stx<K1stxM1
98 83 97 orbi12d φx=1stx2ndx1stx2ndx1stx<K1stx1M¬1stx<K1stx+11M1stx<K1stxM1¬1stx<K1stxM1
99 pm4.42 1stxM11stxM11stx<K1stxM1¬1stx<K
100 ancom 1stxM11stx<K1stx<K1stxM1
101 ancom 1stxM1¬1stx<K¬1stx<K1stxM1
102 100 101 orbi12i 1stxM11stx<K1stxM1¬1stx<K1stx<K1stxM1¬1stx<K1stxM1
103 99 102 bitri 1stxM11stx<K1stxM1¬1stx<K1stxM1
104 98 103 bitr4di φx=1stx2ndx1stx2ndx1stx<K1stx1M¬1stx<K1stx+11M1stxM1
105 58 104 bitrid φx=1stx2ndx1stx2ndxif1stx<K1stx1stx+11M1stxM1
106 ifel if2ndx<L2ndx2ndx+11N2ndx<L2ndx1N¬2ndx<L2ndx+11N
107 simplrr φx=1stx2ndx1stx2ndx2ndx<L2ndx
108 107 nnred φx=1stx2ndx1stx2ndx2ndx<L2ndx
109 18 nnred φL
110 109 ad3antrrr φx=1stx2ndx1stx2ndx2ndx<LL
111 3 nnred φN
112 111 ad3antrrr φx=1stx2ndx1stx2ndx2ndx<LN
113 simpr φx=1stx2ndx1stx2ndx2ndx<L2ndx<L
114 108 110 113 ltled φx=1stx2ndx1stx2ndx2ndx<L2ndxL
115 elfzle2 L1NLN
116 5 115 syl φLN
117 116 ad3antrrr φx=1stx2ndx1stx2ndx2ndx<LLN
118 108 110 112 114 117 letrd φx=1stx2ndx1stx2ndx2ndx<L2ndxN
119 107 118 jca φx=1stx2ndx1stx2ndx2ndx<L2ndx2ndxN
120 3 nnzd φN
121 fznn N2ndx1N2ndx2ndxN
122 120 121 syl φ2ndx1N2ndx2ndxN
123 122 ad3antrrr φx=1stx2ndx1stx2ndx2ndx<L2ndx1N2ndx2ndxN
124 119 123 mpbird φx=1stx2ndx1stx2ndx2ndx<L2ndx1N
125 108 110 112 113 117 ltletrd φx=1stx2ndx1stx2ndx2ndx<L2ndx<N
126 3 ad3antrrr φx=1stx2ndx1stx2ndx2ndx<LN
127 nnltlem1 2ndxN2ndx<N2ndxN1
128 107 126 127 syl2anc φx=1stx2ndx1stx2ndx2ndx<L2ndx<N2ndxN1
129 125 128 mpbid φx=1stx2ndx1stx2ndx2ndx<L2ndxN1
130 124 129 2thd φx=1stx2ndx1stx2ndx2ndx<L2ndx1N2ndxN1
131 130 pm5.32da φx=1stx2ndx1stx2ndx2ndx<L2ndx1N2ndx<L2ndxN1
132 fznn N2ndx+11N2ndx+12ndx+1N
133 120 132 syl φ2ndx+11N2ndx+12ndx+1N
134 133 ad2antrr φx=1stx2ndx1stx2ndx2ndx+11N2ndx+12ndx+1N
135 simprr φx=1stx2ndx1stx2ndx2ndx
136 135 peano2nnd φx=1stx2ndx1stx2ndx2ndx+1
137 136 biantrurd φx=1stx2ndx1stx2ndx2ndx+1N2ndx+12ndx+1N
138 135 nnzd φx=1stx2ndx1stx2ndx2ndx
139 120 ad2antrr φx=1stx2ndx1stx2ndxN
140 zltp1le 2ndxN2ndx<N2ndx+1N
141 zltlem1 2ndxN2ndx<N2ndxN1
142 140 141 bitr3d 2ndxN2ndx+1N2ndxN1
143 138 139 142 syl2anc φx=1stx2ndx1stx2ndx2ndx+1N2ndxN1
144 134 137 143 3bitr2d φx=1stx2ndx1stx2ndx2ndx+11N2ndxN1
145 144 anbi2d φx=1stx2ndx1stx2ndx¬2ndx<L2ndx+11N¬2ndx<L2ndxN1
146 131 145 orbi12d φx=1stx2ndx1stx2ndx2ndx<L2ndx1N¬2ndx<L2ndx+11N2ndx<L2ndxN1¬2ndx<L2ndxN1
147 pm4.42 2ndxN12ndxN12ndx<L2ndxN1¬2ndx<L
148 ancom 2ndxN12ndx<L2ndx<L2ndxN1
149 ancom 2ndxN1¬2ndx<L¬2ndx<L2ndxN1
150 148 149 orbi12i 2ndxN12ndx<L2ndxN1¬2ndx<L2ndx<L2ndxN1¬2ndx<L2ndxN1
151 147 150 bitri 2ndxN12ndx<L2ndxN1¬2ndx<L2ndxN1
152 146 151 bitr4di φx=1stx2ndx1stx2ndx2ndx<L2ndx1N¬2ndx<L2ndx+11N2ndxN1
153 106 152 bitrid φx=1stx2ndx1stx2ndxif2ndx<L2ndx2ndx+11N2ndxN1
154 105 153 anbi12d φx=1stx2ndx1stx2ndxif1stx<K1stx1stx+11Mif2ndx<L2ndx2ndx+11N1stxM12ndxN1
155 57 154 bitrd φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1N1stxM12ndxN1
156 155 pm5.32da φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1N1stx2ndx1stxM12ndxN1
157 1zzd φ1
158 72 157 zsubcld φM1
159 fznn M11stx1M11stx1stxM1
160 158 159 syl φ1stx1M11stx1stxM1
161 120 157 zsubcld φN1
162 fznn N12ndx1N12ndx2ndxN1
163 161 162 syl φ2ndx1N12ndx2ndxN1
164 160 163 anbi12d φ1stx1M12ndx1N11stx1stxM12ndx2ndxN1
165 an4 1stx1stxM12ndx2ndxN11stx2ndx1stxM12ndxN1
166 164 165 bitrdi φ1stx1M12ndx1N11stx2ndx1stxM12ndxN1
167 166 adantr φx=1stx2ndx1stx1M12ndx1N11stx2ndx1stxM12ndxN1
168 156 167 bitr4d φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1N1stx1M12ndx1N1
169 168 pm5.32da φx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1Nx=1stx2ndx1stx1M12ndx1N1
170 elxp6 x×x=1stx2ndx1stx2ndx
171 170 anbi1i x×i,jifi<Kii+1ifj<Ljj+1x1M×1Nx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1N
172 anass x=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1Nx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1N
173 171 172 bitri x×i,jifi<Kii+1ifj<Ljj+1x1M×1Nx=1stx2ndx1stx2ndxi,jifi<Kii+1ifj<Ljj+1x1M×1N
174 elxp6 x1M1×1N1x=1stx2ndx1stx1M12ndx1N1
175 169 173 174 3bitr4g φx×i,jifi<Kii+1ifj<Ljj+1x1M×1Nx1M1×1N1
176 31 36 175 3bitrd φxi,jifi<Kii+1ifj<Ljj+1-1domAx1M1×1N1
177 176 eqrdv φi,jifi<Kii+1ifj<Ljj+1-1domA=1M1×1N1
178 27 177 eqtrid φdomAi,jifi<Kii+1ifj<Ljj+1=1M1×1N1
179 26 178 eqtrd φdomS=1M1×1N1
180 179 feq2d φS:domSranSS:1M1×1N1ranS
181 25 180 mpbid φS:1M1×1N1ranS
182 21 rneqd φranS=ranAi,jifi<Kii+1ifj<Ljj+1
183 rncoss ranAi,jifi<Kii+1ifj<Ljj+1ranA
184 182 183 eqsstrdi φranSranA
185 frn A:1M×1NBranAB
186 6 7 185 3syl φranAB
187 184 186 sstrd φranSB
188 fss S:1M1×1N1ranSranSBS:1M1×1N1B
189 181 187 188 syl2anc φS:1M1×1N1B
190 reldmmap Reldom𝑚
191 190 ovrcl AB1M×1NBV1M×1NV
192 6 191 syl φBV1M×1NV
193 192 simpld φBV
194 ovex 1M1V
195 ovex 1N1V
196 194 195 xpex 1M1×1N1V
197 elmapg BV1M1×1N1VSB1M1×1N1S:1M1×1N1B
198 193 196 197 sylancl φSB1M1×1N1S:1M1×1N1B
199 189 198 mpbird φSB1M1×1N1