Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Matrices
Submatrices
smatrcl
Next ⟩
smatlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
smatrcl
Description:
Closure of the rectangular submatrix.
(Contributed by
Thierry Arnoux
, 19-Aug-2020)
Ref
Expression
Hypotheses
smat.s
⊢
S
=
K
subMat
1
A
L
smat.m
⊢
φ
→
M
∈
ℕ
smat.n
⊢
φ
→
N
∈
ℕ
smat.k
⊢
φ
→
K
∈
1
…
M
smat.l
⊢
φ
→
L
∈
1
…
N
smat.a
⊢
φ
→
A
∈
B
1
…
M
×
1
…
N
Assertion
smatrcl
⊢
φ
→
S
∈
B
1
…
M
−
1
×
1
…
N
−
1
Proof
Step
Hyp
Ref
Expression
1
smat.s
⊢
S
=
K
subMat
1
A
L
2
smat.m
⊢
φ
→
M
∈
ℕ
3
smat.n
⊢
φ
→
N
∈
ℕ
4
smat.k
⊢
φ
→
K
∈
1
…
M
5
smat.l
⊢
φ
→
L
∈
1
…
N
6
smat.a
⊢
φ
→
A
∈
B
1
…
M
×
1
…
N
7
elmapi
⊢
A
∈
B
1
…
M
×
1
…
N
→
A
:
1
…
M
×
1
…
N
⟶
B
8
ffun
⊢
A
:
1
…
M
×
1
…
N
⟶
B
→
Fun
A
9
6
7
8
3syl
⊢
φ
→
Fun
A
10
eqid
⊢
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
=
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
11
10
mpofun
⊢
Fun
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
12
11
a1i
⊢
φ
→
Fun
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
13
funco
⊢
Fun
A
∧
Fun
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
→
Fun
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
14
9
12
13
syl2anc
⊢
φ
→
Fun
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
15
fz1ssnn
⊢
1
…
M
⊆
ℕ
16
15
4
sselid
⊢
φ
→
K
∈
ℕ
17
fz1ssnn
⊢
1
…
N
⊆
ℕ
18
17
5
sselid
⊢
φ
→
L
∈
ℕ
19
smatfval
⊢
K
∈
ℕ
∧
L
∈
ℕ
∧
A
∈
B
1
…
M
×
1
…
N
→
K
subMat
1
A
L
=
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
20
16
18
6
19
syl3anc
⊢
φ
→
K
subMat
1
A
L
=
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
21
1
20
eqtrid
⊢
φ
→
S
=
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
22
21
funeqd
⊢
φ
→
Fun
S
↔
Fun
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
23
14
22
mpbird
⊢
φ
→
Fun
S
24
fdmrn
⊢
Fun
S
↔
S
:
dom
S
⟶
ran
S
25
23
24
sylib
⊢
φ
→
S
:
dom
S
⟶
ran
S
26
21
dmeqd
⊢
φ
→
dom
S
=
dom
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
27
dmco
⊢
dom
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
=
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
dom
A
28
fdm
⊢
A
:
1
…
M
×
1
…
N
⟶
B
→
dom
A
=
1
…
M
×
1
…
N
29
6
7
28
3syl
⊢
φ
→
dom
A
=
1
…
M
×
1
…
N
30
29
imaeq2d
⊢
φ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
dom
A
=
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
1
…
M
×
1
…
N
31
30
eleq2d
⊢
φ
→
x
∈
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
dom
A
↔
x
∈
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
1
…
M
×
1
…
N
32
opex
⊢
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
∈
V
33
10
32
fnmpoi
⊢
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
Fn
ℕ
×
ℕ
34
elpreima
⊢
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
Fn
ℕ
×
ℕ
→
x
∈
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
1
…
M
×
1
…
N
↔
x
∈
ℕ
×
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
35
33
34
ax-mp
⊢
x
∈
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
1
…
M
×
1
…
N
↔
x
∈
ℕ
×
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
36
35
a1i
⊢
φ
→
x
∈
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
1
…
M
×
1
…
N
↔
x
∈
ℕ
×
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
37
simplr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
x
=
1
st
x
2
nd
x
38
37
fveq2d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
=
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
1
st
x
2
nd
x
39
df-ov
⊢
1
st
x
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
2
nd
x
=
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
1
st
x
2
nd
x
40
38
39
eqtr4di
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
=
1
st
x
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
2
nd
x
41
breq1
⊢
i
=
1
st
x
→
i
<
K
↔
1
st
x
<
K
42
id
⊢
i
=
1
st
x
→
i
=
1
st
x
43
oveq1
⊢
i
=
1
st
x
→
i
+
1
=
1
st
x
+
1
44
41
42
43
ifbieq12d
⊢
i
=
1
st
x
→
if
i
<
K
i
i
+
1
=
if
1
st
x
<
K
1
st
x
1
st
x
+
1
45
44
opeq1d
⊢
i
=
1
st
x
→
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
=
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
j
<
L
j
j
+
1
46
breq1
⊢
j
=
2
nd
x
→
j
<
L
↔
2
nd
x
<
L
47
id
⊢
j
=
2
nd
x
→
j
=
2
nd
x
48
oveq1
⊢
j
=
2
nd
x
→
j
+
1
=
2
nd
x
+
1
49
46
47
48
ifbieq12d
⊢
j
=
2
nd
x
→
if
j
<
L
j
j
+
1
=
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
50
49
opeq2d
⊢
j
=
2
nd
x
→
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
j
<
L
j
j
+
1
=
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
51
opex
⊢
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
V
52
45
50
10
51
ovmpo
⊢
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
2
nd
x
=
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
53
52
adantl
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
2
nd
x
=
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
54
40
53
eqtrd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
=
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
55
54
eleq1d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
M
×
1
…
N
56
opelxp
⊢
if
1
st
x
<
K
1
st
x
1
st
x
+
1
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
M
×
1
…
N
↔
if
1
st
x
<
K
1
st
x
1
st
x
+
1
∈
1
…
M
∧
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
N
57
55
56
bitrdi
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
if
1
st
x
<
K
1
st
x
1
st
x
+
1
∈
1
…
M
∧
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
N
58
ifel
⊢
if
1
st
x
<
K
1
st
x
1
st
x
+
1
∈
1
…
M
↔
1
st
x
<
K
∧
1
st
x
∈
1
…
M
∨
¬
1
st
x
<
K
∧
1
st
x
+
1
∈
1
…
M
59
simplrl
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
∈
ℕ
60
59
nnred
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
∈
ℝ
61
16
nnred
⊢
φ
→
K
∈
ℝ
62
61
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
K
∈
ℝ
63
2
nnred
⊢
φ
→
M
∈
ℝ
64
63
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
M
∈
ℝ
65
simpr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
<
K
66
60
62
65
ltled
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
≤
K
67
elfzle2
⊢
K
∈
1
…
M
→
K
≤
M
68
4
67
syl
⊢
φ
→
K
≤
M
69
68
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
K
≤
M
70
60
62
64
66
69
letrd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
≤
M
71
59
70
jca
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
∈
ℕ
∧
1
st
x
≤
M
72
2
nnzd
⊢
φ
→
M
∈
ℤ
73
fznn
⊢
M
∈
ℤ
→
1
st
x
∈
1
…
M
↔
1
st
x
∈
ℕ
∧
1
st
x
≤
M
74
72
73
syl
⊢
φ
→
1
st
x
∈
1
…
M
↔
1
st
x
∈
ℕ
∧
1
st
x
≤
M
75
74
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
∈
1
…
M
↔
1
st
x
∈
ℕ
∧
1
st
x
≤
M
76
71
75
mpbird
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
∈
1
…
M
77
60
62
64
65
69
ltletrd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
<
M
78
2
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
M
∈
ℕ
79
nnltlem1
⊢
1
st
x
∈
ℕ
∧
M
∈
ℕ
→
1
st
x
<
M
↔
1
st
x
≤
M
−
1
80
59
78
79
syl2anc
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
<
M
↔
1
st
x
≤
M
−
1
81
77
80
mpbid
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
≤
M
−
1
82
76
81
2thd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
<
K
→
1
st
x
∈
1
…
M
↔
1
st
x
≤
M
−
1
83
82
pm5.32da
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
<
K
∧
1
st
x
∈
1
…
M
↔
1
st
x
<
K
∧
1
st
x
≤
M
−
1
84
fznn
⊢
M
∈
ℤ
→
1
st
x
+
1
∈
1
…
M
↔
1
st
x
+
1
∈
ℕ
∧
1
st
x
+
1
≤
M
85
72
84
syl
⊢
φ
→
1
st
x
+
1
∈
1
…
M
↔
1
st
x
+
1
∈
ℕ
∧
1
st
x
+
1
≤
M
86
85
ad2antrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
+
1
∈
1
…
M
↔
1
st
x
+
1
∈
ℕ
∧
1
st
x
+
1
≤
M
87
simprl
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
∈
ℕ
88
87
peano2nnd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
+
1
∈
ℕ
89
88
biantrurd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
+
1
≤
M
↔
1
st
x
+
1
∈
ℕ
∧
1
st
x
+
1
≤
M
90
87
nnzd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
∈
ℤ
91
72
ad2antrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
M
∈
ℤ
92
zltp1le
⊢
1
st
x
∈
ℤ
∧
M
∈
ℤ
→
1
st
x
<
M
↔
1
st
x
+
1
≤
M
93
zltlem1
⊢
1
st
x
∈
ℤ
∧
M
∈
ℤ
→
1
st
x
<
M
↔
1
st
x
≤
M
−
1
94
92
93
bitr3d
⊢
1
st
x
∈
ℤ
∧
M
∈
ℤ
→
1
st
x
+
1
≤
M
↔
1
st
x
≤
M
−
1
95
90
91
94
syl2anc
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
+
1
≤
M
↔
1
st
x
≤
M
−
1
96
86
89
95
3bitr2d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
+
1
∈
1
…
M
↔
1
st
x
≤
M
−
1
97
96
anbi2d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
¬
1
st
x
<
K
∧
1
st
x
+
1
∈
1
…
M
↔
¬
1
st
x
<
K
∧
1
st
x
≤
M
−
1
98
83
97
orbi12d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
<
K
∧
1
st
x
∈
1
…
M
∨
¬
1
st
x
<
K
∧
1
st
x
+
1
∈
1
…
M
↔
1
st
x
<
K
∧
1
st
x
≤
M
−
1
∨
¬
1
st
x
<
K
∧
1
st
x
≤
M
−
1
99
pm4.42
⊢
1
st
x
≤
M
−
1
↔
1
st
x
≤
M
−
1
∧
1
st
x
<
K
∨
1
st
x
≤
M
−
1
∧
¬
1
st
x
<
K
100
ancom
⊢
1
st
x
≤
M
−
1
∧
1
st
x
<
K
↔
1
st
x
<
K
∧
1
st
x
≤
M
−
1
101
ancom
⊢
1
st
x
≤
M
−
1
∧
¬
1
st
x
<
K
↔
¬
1
st
x
<
K
∧
1
st
x
≤
M
−
1
102
100
101
orbi12i
⊢
1
st
x
≤
M
−
1
∧
1
st
x
<
K
∨
1
st
x
≤
M
−
1
∧
¬
1
st
x
<
K
↔
1
st
x
<
K
∧
1
st
x
≤
M
−
1
∨
¬
1
st
x
<
K
∧
1
st
x
≤
M
−
1
103
99
102
bitri
⊢
1
st
x
≤
M
−
1
↔
1
st
x
<
K
∧
1
st
x
≤
M
−
1
∨
¬
1
st
x
<
K
∧
1
st
x
≤
M
−
1
104
98
103
bitr4di
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
1
st
x
<
K
∧
1
st
x
∈
1
…
M
∨
¬
1
st
x
<
K
∧
1
st
x
+
1
∈
1
…
M
↔
1
st
x
≤
M
−
1
105
58
104
bitrid
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
if
1
st
x
<
K
1
st
x
1
st
x
+
1
∈
1
…
M
↔
1
st
x
≤
M
−
1
106
ifel
⊢
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
<
L
∧
2
nd
x
∈
1
…
N
∨
¬
2
nd
x
<
L
∧
2
nd
x
+
1
∈
1
…
N
107
simplrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
∈
ℕ
108
107
nnred
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
∈
ℝ
109
18
nnred
⊢
φ
→
L
∈
ℝ
110
109
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
L
∈
ℝ
111
3
nnred
⊢
φ
→
N
∈
ℝ
112
111
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
N
∈
ℝ
113
simpr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
<
L
114
108
110
113
ltled
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
≤
L
115
elfzle2
⊢
L
∈
1
…
N
→
L
≤
N
116
5
115
syl
⊢
φ
→
L
≤
N
117
116
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
L
≤
N
118
108
110
112
114
117
letrd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
≤
N
119
107
118
jca
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
120
3
nnzd
⊢
φ
→
N
∈
ℤ
121
fznn
⊢
N
∈
ℤ
→
2
nd
x
∈
1
…
N
↔
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
122
120
121
syl
⊢
φ
→
2
nd
x
∈
1
…
N
↔
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
123
122
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
∈
1
…
N
↔
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
124
119
123
mpbird
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
∈
1
…
N
125
108
110
112
113
117
ltletrd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
<
N
126
3
ad3antrrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
N
∈
ℕ
127
nnltlem1
⊢
2
nd
x
∈
ℕ
∧
N
∈
ℕ
→
2
nd
x
<
N
↔
2
nd
x
≤
N
−
1
128
107
126
127
syl2anc
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
<
N
↔
2
nd
x
≤
N
−
1
129
125
128
mpbid
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
≤
N
−
1
130
124
129
2thd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
2
nd
x
<
L
→
2
nd
x
∈
1
…
N
↔
2
nd
x
≤
N
−
1
131
130
pm5.32da
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
<
L
∧
2
nd
x
∈
1
…
N
↔
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
132
fznn
⊢
N
∈
ℤ
→
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
+
1
∈
ℕ
∧
2
nd
x
+
1
≤
N
133
120
132
syl
⊢
φ
→
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
+
1
∈
ℕ
∧
2
nd
x
+
1
≤
N
134
133
ad2antrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
+
1
∈
ℕ
∧
2
nd
x
+
1
≤
N
135
simprr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
∈
ℕ
136
135
peano2nnd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
+
1
∈
ℕ
137
136
biantrurd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
+
1
≤
N
↔
2
nd
x
+
1
∈
ℕ
∧
2
nd
x
+
1
≤
N
138
135
nnzd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
∈
ℤ
139
120
ad2antrr
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
N
∈
ℤ
140
zltp1le
⊢
2
nd
x
∈
ℤ
∧
N
∈
ℤ
→
2
nd
x
<
N
↔
2
nd
x
+
1
≤
N
141
zltlem1
⊢
2
nd
x
∈
ℤ
∧
N
∈
ℤ
→
2
nd
x
<
N
↔
2
nd
x
≤
N
−
1
142
140
141
bitr3d
⊢
2
nd
x
∈
ℤ
∧
N
∈
ℤ
→
2
nd
x
+
1
≤
N
↔
2
nd
x
≤
N
−
1
143
138
139
142
syl2anc
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
+
1
≤
N
↔
2
nd
x
≤
N
−
1
144
134
137
143
3bitr2d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
≤
N
−
1
145
144
anbi2d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
¬
2
nd
x
<
L
∧
2
nd
x
+
1
∈
1
…
N
↔
¬
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
146
131
145
orbi12d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
<
L
∧
2
nd
x
∈
1
…
N
∨
¬
2
nd
x
<
L
∧
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
∨
¬
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
147
pm4.42
⊢
2
nd
x
≤
N
−
1
↔
2
nd
x
≤
N
−
1
∧
2
nd
x
<
L
∨
2
nd
x
≤
N
−
1
∧
¬
2
nd
x
<
L
148
ancom
⊢
2
nd
x
≤
N
−
1
∧
2
nd
x
<
L
↔
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
149
ancom
⊢
2
nd
x
≤
N
−
1
∧
¬
2
nd
x
<
L
↔
¬
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
150
148
149
orbi12i
⊢
2
nd
x
≤
N
−
1
∧
2
nd
x
<
L
∨
2
nd
x
≤
N
−
1
∧
¬
2
nd
x
<
L
↔
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
∨
¬
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
151
147
150
bitri
⊢
2
nd
x
≤
N
−
1
↔
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
∨
¬
2
nd
x
<
L
∧
2
nd
x
≤
N
−
1
152
146
151
bitr4di
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
2
nd
x
<
L
∧
2
nd
x
∈
1
…
N
∨
¬
2
nd
x
<
L
∧
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
≤
N
−
1
153
106
152
bitrid
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
N
↔
2
nd
x
≤
N
−
1
154
105
153
anbi12d
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
if
1
st
x
<
K
1
st
x
1
st
x
+
1
∈
1
…
M
∧
if
2
nd
x
<
L
2
nd
x
2
nd
x
+
1
∈
1
…
N
↔
1
st
x
≤
M
−
1
∧
2
nd
x
≤
N
−
1
155
57
154
bitrd
⊢
φ
∧
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
1
st
x
≤
M
−
1
∧
2
nd
x
≤
N
−
1
156
155
pm5.32da
⊢
φ
∧
x
=
1
st
x
2
nd
x
→
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
≤
M
−
1
∧
2
nd
x
≤
N
−
1
157
1zzd
⊢
φ
→
1
∈
ℤ
158
72
157
zsubcld
⊢
φ
→
M
−
1
∈
ℤ
159
fznn
⊢
M
−
1
∈
ℤ
→
1
st
x
∈
1
…
M
−
1
↔
1
st
x
∈
ℕ
∧
1
st
x
≤
M
−
1
160
158
159
syl
⊢
φ
→
1
st
x
∈
1
…
M
−
1
↔
1
st
x
∈
ℕ
∧
1
st
x
≤
M
−
1
161
120
157
zsubcld
⊢
φ
→
N
−
1
∈
ℤ
162
fznn
⊢
N
−
1
∈
ℤ
→
2
nd
x
∈
1
…
N
−
1
↔
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
−
1
163
161
162
syl
⊢
φ
→
2
nd
x
∈
1
…
N
−
1
↔
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
−
1
164
160
163
anbi12d
⊢
φ
→
1
st
x
∈
1
…
M
−
1
∧
2
nd
x
∈
1
…
N
−
1
↔
1
st
x
∈
ℕ
∧
1
st
x
≤
M
−
1
∧
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
−
1
165
an4
⊢
1
st
x
∈
ℕ
∧
1
st
x
≤
M
−
1
∧
2
nd
x
∈
ℕ
∧
2
nd
x
≤
N
−
1
↔
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
≤
M
−
1
∧
2
nd
x
≤
N
−
1
166
164
165
bitrdi
⊢
φ
→
1
st
x
∈
1
…
M
−
1
∧
2
nd
x
∈
1
…
N
−
1
↔
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
≤
M
−
1
∧
2
nd
x
≤
N
−
1
167
166
adantr
⊢
φ
∧
x
=
1
st
x
2
nd
x
→
1
st
x
∈
1
…
M
−
1
∧
2
nd
x
∈
1
…
N
−
1
↔
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
1
st
x
≤
M
−
1
∧
2
nd
x
≤
N
−
1
168
156
167
bitr4d
⊢
φ
∧
x
=
1
st
x
2
nd
x
→
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
1
st
x
∈
1
…
M
−
1
∧
2
nd
x
∈
1
…
N
−
1
169
168
pm5.32da
⊢
φ
→
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
1
…
M
−
1
∧
2
nd
x
∈
1
…
N
−
1
170
elxp6
⊢
x
∈
ℕ
×
ℕ
↔
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
171
170
anbi1i
⊢
x
∈
ℕ
×
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
172
anass
⊢
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
173
171
172
bitri
⊢
x
∈
ℕ
×
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
ℕ
∧
2
nd
x
∈
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
174
elxp6
⊢
x
∈
1
…
M
−
1
×
1
…
N
−
1
↔
x
=
1
st
x
2
nd
x
∧
1
st
x
∈
1
…
M
−
1
∧
2
nd
x
∈
1
…
N
−
1
175
169
173
174
3bitr4g
⊢
φ
→
x
∈
ℕ
×
ℕ
∧
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
x
∈
1
…
M
×
1
…
N
↔
x
∈
1
…
M
−
1
×
1
…
N
−
1
176
31
36
175
3bitrd
⊢
φ
→
x
∈
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
dom
A
↔
x
∈
1
…
M
−
1
×
1
…
N
−
1
177
176
eqrdv
⊢
φ
→
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
-1
dom
A
=
1
…
M
−
1
×
1
…
N
−
1
178
27
177
eqtrid
⊢
φ
→
dom
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
=
1
…
M
−
1
×
1
…
N
−
1
179
26
178
eqtrd
⊢
φ
→
dom
S
=
1
…
M
−
1
×
1
…
N
−
1
180
179
feq2d
⊢
φ
→
S
:
dom
S
⟶
ran
S
↔
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
ran
S
181
25
180
mpbid
⊢
φ
→
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
ran
S
182
21
rneqd
⊢
φ
→
ran
S
=
ran
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
183
rncoss
⊢
ran
A
∘
i
∈
ℕ
,
j
∈
ℕ
⟼
if
i
<
K
i
i
+
1
if
j
<
L
j
j
+
1
⊆
ran
A
184
182
183
eqsstrdi
⊢
φ
→
ran
S
⊆
ran
A
185
frn
⊢
A
:
1
…
M
×
1
…
N
⟶
B
→
ran
A
⊆
B
186
6
7
185
3syl
⊢
φ
→
ran
A
⊆
B
187
184
186
sstrd
⊢
φ
→
ran
S
⊆
B
188
fss
⊢
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
ran
S
∧
ran
S
⊆
B
→
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
B
189
181
187
188
syl2anc
⊢
φ
→
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
B
190
reldmmap
⊢
Rel
dom
↑
𝑚
191
190
ovrcl
⊢
A
∈
B
1
…
M
×
1
…
N
→
B
∈
V
∧
1
…
M
×
1
…
N
∈
V
192
6
191
syl
⊢
φ
→
B
∈
V
∧
1
…
M
×
1
…
N
∈
V
193
192
simpld
⊢
φ
→
B
∈
V
194
ovex
⊢
1
…
M
−
1
∈
V
195
ovex
⊢
1
…
N
−
1
∈
V
196
194
195
xpex
⊢
1
…
M
−
1
×
1
…
N
−
1
∈
V
197
elmapg
⊢
B
∈
V
∧
1
…
M
−
1
×
1
…
N
−
1
∈
V
→
S
∈
B
1
…
M
−
1
×
1
…
N
−
1
↔
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
B
198
193
196
197
sylancl
⊢
φ
→
S
∈
B
1
…
M
−
1
×
1
…
N
−
1
↔
S
:
1
…
M
−
1
×
1
…
N
−
1
⟶
B
199
189
198
mpbird
⊢
φ
→
S
∈
B
1
…
M
−
1
×
1
…
N
−
1