| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem44.1 |  | 
						
							| 2 |  | stoweidlem44.2 |  | 
						
							| 3 |  | stoweidlem44.3 |  | 
						
							| 4 |  | stoweidlem44.4 |  | 
						
							| 5 |  | stoweidlem44.5 |  | 
						
							| 6 |  | stoweidlem44.6 |  | 
						
							| 7 |  | stoweidlem44.7 |  | 
						
							| 8 |  | stoweidlem44.8 |  | 
						
							| 9 |  | stoweidlem44.9 |  | 
						
							| 10 |  | stoweidlem44.10 |  | 
						
							| 11 |  | stoweidlem44.11 |  | 
						
							| 12 |  | stoweidlem44.12 |  | 
						
							| 13 |  | stoweidlem44.13 |  | 
						
							| 14 |  | stoweidlem44.14 |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 6 | nnrecred |  | 
						
							| 18 |  | ssrab2 |  | 
						
							| 19 | 4 18 | eqsstri |  | 
						
							| 20 |  | fss |  | 
						
							| 21 | 7 19 20 | sylancl |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 10 | sselda |  | 
						
							| 24 | 3 9 22 23 | fcnre |  | 
						
							| 25 | 2 5 15 16 6 17 21 11 12 13 24 | stoweidlem32 |  | 
						
							| 26 | 4 5 6 7 24 | stoweidlem38 |  | 
						
							| 27 | 26 | ex |  | 
						
							| 28 | 2 27 | ralrimi |  | 
						
							| 29 | 4 5 6 7 24 14 | stoweidlem37 |  | 
						
							| 30 |  | nfv |  | 
						
							| 31 | 1 30 | nfan |  | 
						
							| 32 |  | nfv |  | 
						
							| 33 | 8 | r19.21bi |  | 
						
							| 34 |  | df-rex |  | 
						
							| 35 | 33 34 | sylib |  | 
						
							| 36 | 17 | ad2antrr |  | 
						
							| 37 |  | simpll |  | 
						
							| 38 |  | eldifi |  | 
						
							| 39 | 38 | ad2antlr |  | 
						
							| 40 |  | fzfid |  | 
						
							| 41 | 4 7 24 | stoweidlem15 |  | 
						
							| 42 | 41 | an32s |  | 
						
							| 43 | 42 | simp1d |  | 
						
							| 44 | 40 43 | fsumrecl |  | 
						
							| 45 | 37 39 44 | syl2anc |  | 
						
							| 46 | 6 | nnred |  | 
						
							| 47 | 6 | nngt0d |  | 
						
							| 48 | 46 47 | recgt0d |  | 
						
							| 49 | 48 | ad2antrr |  | 
						
							| 50 |  | 0red |  | 
						
							| 51 |  | simprl |  | 
						
							| 52 | 37 51 39 | 3jca |  | 
						
							| 53 |  | snfi |  | 
						
							| 54 | 53 | a1i |  | 
						
							| 55 |  | simpl1 |  | 
						
							| 56 |  | simpl3 |  | 
						
							| 57 |  | elsni |  | 
						
							| 58 | 57 | adantl |  | 
						
							| 59 |  | simpl2 |  | 
						
							| 60 | 58 59 | eqeltrd |  | 
						
							| 61 | 55 56 60 43 | syl21anc |  | 
						
							| 62 | 54 61 | fsumrecl |  | 
						
							| 63 | 52 62 | syl |  | 
						
							| 64 | 50 63 | readdcld |  | 
						
							| 65 |  | fzfi |  | 
						
							| 66 |  | diffi |  | 
						
							| 67 | 65 66 | mp1i |  | 
						
							| 68 |  | eldifi |  | 
						
							| 69 | 68 43 | sylan2 |  | 
						
							| 70 | 67 69 | fsumrecl |  | 
						
							| 71 | 37 39 70 | syl2anc |  | 
						
							| 72 | 71 63 | readdcld |  | 
						
							| 73 |  | 00id |  | 
						
							| 74 |  | simprr |  | 
						
							| 75 | 4 7 24 | stoweidlem15 |  | 
						
							| 76 | 75 | simp1d |  | 
						
							| 77 | 37 51 39 76 | syl21anc |  | 
						
							| 78 | 77 | recnd |  | 
						
							| 79 |  | fveq2 |  | 
						
							| 80 | 79 | fveq1d |  | 
						
							| 81 | 80 | sumsn |  | 
						
							| 82 | 51 78 81 | syl2anc |  | 
						
							| 83 | 74 82 | breqtrrd |  | 
						
							| 84 | 50 63 50 83 | ltadd2dd |  | 
						
							| 85 | 73 84 | eqbrtrrid |  | 
						
							| 86 |  | 0red |  | 
						
							| 87 | 70 | 3adant2 |  | 
						
							| 88 |  | simpll |  | 
						
							| 89 | 68 | adantl |  | 
						
							| 90 |  | simplr |  | 
						
							| 91 | 88 89 90 41 | syl21anc |  | 
						
							| 92 | 91 | simp2d |  | 
						
							| 93 | 67 69 92 | fsumge0 |  | 
						
							| 94 | 93 | 3adant2 |  | 
						
							| 95 | 86 87 62 94 | leadd1dd |  | 
						
							| 96 | 52 95 | syl |  | 
						
							| 97 | 50 64 72 85 96 | ltletrd |  | 
						
							| 98 |  | eldifn |  | 
						
							| 99 |  | imnan |  | 
						
							| 100 | 98 99 | mpbi |  | 
						
							| 101 |  | elin |  | 
						
							| 102 | 100 101 | mtbir |  | 
						
							| 103 | 102 | nel0 |  | 
						
							| 104 | 103 | a1i |  | 
						
							| 105 |  | undif1 |  | 
						
							| 106 |  | snssi |  | 
						
							| 107 | 106 | 3ad2ant2 |  | 
						
							| 108 |  | ssequn2 |  | 
						
							| 109 | 107 108 | sylib |  | 
						
							| 110 | 105 109 | eqtr2id |  | 
						
							| 111 |  | fzfid |  | 
						
							| 112 | 43 | 3adantl2 |  | 
						
							| 113 | 112 | recnd |  | 
						
							| 114 | 104 110 111 113 | fsumsplit |  | 
						
							| 115 | 52 114 | syl |  | 
						
							| 116 | 97 115 | breqtrrd |  | 
						
							| 117 | 36 45 49 116 | mulgt0d |  | 
						
							| 118 | 31 32 35 117 | exlimdd |  | 
						
							| 119 | 4 5 6 7 24 | stoweidlem30 |  | 
						
							| 120 | 38 119 | sylan2 |  | 
						
							| 121 | 118 120 | breqtrrd |  | 
						
							| 122 | 121 | ex |  | 
						
							| 123 | 2 122 | ralrimi |  | 
						
							| 124 | 28 29 123 | 3jca |  | 
						
							| 125 |  | eleq1 |  | 
						
							| 126 |  | nfmpt1 |  | 
						
							| 127 | 5 126 | nfcxfr |  | 
						
							| 128 | 127 | nfeq2 |  | 
						
							| 129 |  | fveq1 |  | 
						
							| 130 | 129 | breq2d |  | 
						
							| 131 | 129 | breq1d |  | 
						
							| 132 | 130 131 | anbi12d |  | 
						
							| 133 | 128 132 | ralbid |  | 
						
							| 134 |  | fveq1 |  | 
						
							| 135 | 134 | eqeq1d |  | 
						
							| 136 | 129 | breq2d |  | 
						
							| 137 | 128 136 | ralbid |  | 
						
							| 138 | 133 135 137 | 3anbi123d |  | 
						
							| 139 | 125 138 | anbi12d |  | 
						
							| 140 | 139 | spcegv |  | 
						
							| 141 | 25 140 | syl |  | 
						
							| 142 | 25 124 141 | mp2and |  | 
						
							| 143 |  | df-rex |  | 
						
							| 144 | 142 143 | sylibr |  |