Metamath Proof Explorer


Theorem stoweidlem44

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used to represent t_0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem44.1 j φ
stoweidlem44.2 t φ
stoweidlem44.3 K = topGen ran .
stoweidlem44.4 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem44.5 P = t T 1 M i = 1 M G i t
stoweidlem44.6 φ M
stoweidlem44.7 φ G : 1 M Q
stoweidlem44.8 φ t T U j 1 M 0 < G j t
stoweidlem44.9 T = J
stoweidlem44.10 φ A J Cn K
stoweidlem44.11 φ f A g A t T f t + g t A
stoweidlem44.12 φ f A g A t T f t g t A
stoweidlem44.13 φ x t T x A
stoweidlem44.14 φ Z T
Assertion stoweidlem44 φ p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t

Proof

Step Hyp Ref Expression
1 stoweidlem44.1 j φ
2 stoweidlem44.2 t φ
3 stoweidlem44.3 K = topGen ran .
4 stoweidlem44.4 Q = h A | h Z = 0 t T 0 h t h t 1
5 stoweidlem44.5 P = t T 1 M i = 1 M G i t
6 stoweidlem44.6 φ M
7 stoweidlem44.7 φ G : 1 M Q
8 stoweidlem44.8 φ t T U j 1 M 0 < G j t
9 stoweidlem44.9 T = J
10 stoweidlem44.10 φ A J Cn K
11 stoweidlem44.11 φ f A g A t T f t + g t A
12 stoweidlem44.12 φ f A g A t T f t g t A
13 stoweidlem44.13 φ x t T x A
14 stoweidlem44.14 φ Z T
15 eqid t T i = 1 M G i t = t T i = 1 M G i t
16 eqid t T 1 M = t T 1 M
17 6 nnrecred φ 1 M
18 ssrab2 h A | h Z = 0 t T 0 h t h t 1 A
19 4 18 eqsstri Q A
20 fss G : 1 M Q Q A G : 1 M A
21 7 19 20 sylancl φ G : 1 M A
22 eqid J Cn K = J Cn K
23 10 sselda φ f A f J Cn K
24 3 9 22 23 fcnre φ f A f : T
25 2 5 15 16 6 17 21 11 12 13 24 stoweidlem32 φ P A
26 4 5 6 7 24 stoweidlem38 φ t T 0 P t P t 1
27 26 ex φ t T 0 P t P t 1
28 2 27 ralrimi φ t T 0 P t P t 1
29 4 5 6 7 24 14 stoweidlem37 φ P Z = 0
30 nfv j t T U
31 1 30 nfan j φ t T U
32 nfv j 0 < 1 M i = 1 M G i t
33 8 r19.21bi φ t T U j 1 M 0 < G j t
34 df-rex j 1 M 0 < G j t j j 1 M 0 < G j t
35 33 34 sylib φ t T U j j 1 M 0 < G j t
36 17 ad2antrr φ t T U j 1 M 0 < G j t 1 M
37 simpll φ t T U j 1 M 0 < G j t φ
38 eldifi t T U t T
39 38 ad2antlr φ t T U j 1 M 0 < G j t t T
40 fzfid φ t T 1 M Fin
41 4 7 24 stoweidlem15 φ i 1 M t T G i t 0 G i t G i t 1
42 41 an32s φ t T i 1 M G i t 0 G i t G i t 1
43 42 simp1d φ t T i 1 M G i t
44 40 43 fsumrecl φ t T i = 1 M G i t
45 37 39 44 syl2anc φ t T U j 1 M 0 < G j t i = 1 M G i t
46 6 nnred φ M
47 6 nngt0d φ 0 < M
48 46 47 recgt0d φ 0 < 1 M
49 48 ad2antrr φ t T U j 1 M 0 < G j t 0 < 1 M
50 0red φ t T U j 1 M 0 < G j t 0
51 simprl φ t T U j 1 M 0 < G j t j 1 M
52 37 51 39 3jca φ t T U j 1 M 0 < G j t φ j 1 M t T
53 snfi j Fin
54 53 a1i φ j 1 M t T j Fin
55 simpl1 φ j 1 M t T i j φ
56 simpl3 φ j 1 M t T i j t T
57 elsni i j i = j
58 57 adantl φ j 1 M t T i j i = j
59 simpl2 φ j 1 M t T i j j 1 M
60 58 59 eqeltrd φ j 1 M t T i j i 1 M
61 55 56 60 43 syl21anc φ j 1 M t T i j G i t
62 54 61 fsumrecl φ j 1 M t T i j G i t
63 52 62 syl φ t T U j 1 M 0 < G j t i j G i t
64 50 63 readdcld φ t T U j 1 M 0 < G j t 0 + i j G i t
65 fzfi 1 M Fin
66 diffi 1 M Fin 1 M j Fin
67 65 66 mp1i φ t T 1 M j Fin
68 eldifi i 1 M j i 1 M
69 68 43 sylan2 φ t T i 1 M j G i t
70 67 69 fsumrecl φ t T i 1 M j G i t
71 37 39 70 syl2anc φ t T U j 1 M 0 < G j t i 1 M j G i t
72 71 63 readdcld φ t T U j 1 M 0 < G j t i 1 M j G i t + i j G i t
73 00id 0 + 0 = 0
74 simprr φ t T U j 1 M 0 < G j t 0 < G j t
75 4 7 24 stoweidlem15 φ j 1 M t T G j t 0 G j t G j t 1
76 75 simp1d φ j 1 M t T G j t
77 37 51 39 76 syl21anc φ t T U j 1 M 0 < G j t G j t
78 77 recnd φ t T U j 1 M 0 < G j t G j t
79 fveq2 i = j G i = G j
80 79 fveq1d i = j G i t = G j t
81 80 sumsn j 1 M G j t i j G i t = G j t
82 51 78 81 syl2anc φ t T U j 1 M 0 < G j t i j G i t = G j t
83 74 82 breqtrrd φ t T U j 1 M 0 < G j t 0 < i j G i t
84 50 63 50 83 ltadd2dd φ t T U j 1 M 0 < G j t 0 + 0 < 0 + i j G i t
85 73 84 eqbrtrrid φ t T U j 1 M 0 < G j t 0 < 0 + i j G i t
86 0red φ j 1 M t T 0
87 70 3adant2 φ j 1 M t T i 1 M j G i t
88 simpll φ t T i 1 M j φ
89 68 adantl φ t T i 1 M j i 1 M
90 simplr φ t T i 1 M j t T
91 88 89 90 41 syl21anc φ t T i 1 M j G i t 0 G i t G i t 1
92 91 simp2d φ t T i 1 M j 0 G i t
93 67 69 92 fsumge0 φ t T 0 i 1 M j G i t
94 93 3adant2 φ j 1 M t T 0 i 1 M j G i t
95 86 87 62 94 leadd1dd φ j 1 M t T 0 + i j G i t i 1 M j G i t + i j G i t
96 52 95 syl φ t T U j 1 M 0 < G j t 0 + i j G i t i 1 M j G i t + i j G i t
97 50 64 72 85 96 ltletrd φ t T U j 1 M 0 < G j t 0 < i 1 M j G i t + i j G i t
98 eldifn x 1 M j ¬ x j
99 imnan x 1 M j ¬ x j ¬ x 1 M j x j
100 98 99 mpbi ¬ x 1 M j x j
101 elin x 1 M j j x 1 M j x j
102 100 101 mtbir ¬ x 1 M j j
103 102 nel0 1 M j j =
104 103 a1i φ j 1 M t T 1 M j j =
105 undif1 1 M j j = 1 M j
106 snssi j 1 M j 1 M
107 106 3ad2ant2 φ j 1 M t T j 1 M
108 ssequn2 j 1 M 1 M j = 1 M
109 107 108 sylib φ j 1 M t T 1 M j = 1 M
110 105 109 syl5req φ j 1 M t T 1 M = 1 M j j
111 fzfid φ j 1 M t T 1 M Fin
112 43 3adantl2 φ j 1 M t T i 1 M G i t
113 112 recnd φ j 1 M t T i 1 M G i t
114 104 110 111 113 fsumsplit φ j 1 M t T i = 1 M G i t = i 1 M j G i t + i j G i t
115 52 114 syl φ t T U j 1 M 0 < G j t i = 1 M G i t = i 1 M j G i t + i j G i t
116 97 115 breqtrrd φ t T U j 1 M 0 < G j t 0 < i = 1 M G i t
117 36 45 49 116 mulgt0d φ t T U j 1 M 0 < G j t 0 < 1 M i = 1 M G i t
118 31 32 35 117 exlimdd φ t T U 0 < 1 M i = 1 M G i t
119 4 5 6 7 24 stoweidlem30 φ t T P t = 1 M i = 1 M G i t
120 38 119 sylan2 φ t T U P t = 1 M i = 1 M G i t
121 118 120 breqtrrd φ t T U 0 < P t
122 121 ex φ t T U 0 < P t
123 2 122 ralrimi φ t T U 0 < P t
124 28 29 123 3jca φ t T 0 P t P t 1 P Z = 0 t T U 0 < P t
125 eleq1 p = P p A P A
126 nfmpt1 _ t t T 1 M i = 1 M G i t
127 5 126 nfcxfr _ t P
128 127 nfeq2 t p = P
129 fveq1 p = P p t = P t
130 129 breq2d p = P 0 p t 0 P t
131 129 breq1d p = P p t 1 P t 1
132 130 131 anbi12d p = P 0 p t p t 1 0 P t P t 1
133 128 132 ralbid p = P t T 0 p t p t 1 t T 0 P t P t 1
134 fveq1 p = P p Z = P Z
135 134 eqeq1d p = P p Z = 0 P Z = 0
136 129 breq2d p = P 0 < p t 0 < P t
137 128 136 ralbid p = P t T U 0 < p t t T U 0 < P t
138 133 135 137 3anbi123d p = P t T 0 p t p t 1 p Z = 0 t T U 0 < p t t T 0 P t P t 1 P Z = 0 t T U 0 < P t
139 125 138 anbi12d p = P p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t P A t T 0 P t P t 1 P Z = 0 t T U 0 < P t
140 139 spcegv P A P A t T 0 P t P t 1 P Z = 0 t T U 0 < P t p p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t
141 25 140 syl φ P A t T 0 P t P t 1 P Z = 0 t T U 0 < P t p p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t
142 25 124 141 mp2and φ p p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t
143 df-rex p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t p p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t
144 142 143 sylibr φ p A t T 0 p t p t 1 p Z = 0 t T U 0 < p t