Metamath Proof Explorer


Theorem stoweidlem57

Description: There exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem57.1 _tD
stoweidlem57.2 _tU
stoweidlem57.3 tφ
stoweidlem57.4 Y=hA|tT0htht1
stoweidlem57.5 V=wJ|e+hAtT0htht1twht<etTU1e<ht
stoweidlem57.6 K=topGenran.
stoweidlem57.7 T=J
stoweidlem57.8 C=JCnK
stoweidlem57.9 U=TB
stoweidlem57.10 φJComp
stoweidlem57.11 φAC
stoweidlem57.12 φfAgAtTft+gtA
stoweidlem57.13 φfAgAtTftgtA
stoweidlem57.14 φatTaA
stoweidlem57.15 φrTtTrtqAqrqt
stoweidlem57.16 φBClsdJ
stoweidlem57.17 φDClsdJ
stoweidlem57.18 φBD=
stoweidlem57.19 φD
stoweidlem57.20 φE+
stoweidlem57.21 φE<13
Assertion stoweidlem57 φxAtT0xtxt1tDxt<EtB1E<xt

Proof

Step Hyp Ref Expression
1 stoweidlem57.1 _tD
2 stoweidlem57.2 _tU
3 stoweidlem57.3 tφ
4 stoweidlem57.4 Y=hA|tT0htht1
5 stoweidlem57.5 V=wJ|e+hAtT0htht1twht<etTU1e<ht
6 stoweidlem57.6 K=topGenran.
7 stoweidlem57.7 T=J
8 stoweidlem57.8 C=JCnK
9 stoweidlem57.9 U=TB
10 stoweidlem57.10 φJComp
11 stoweidlem57.11 φAC
12 stoweidlem57.12 φfAgAtTft+gtA
13 stoweidlem57.13 φfAgAtTftgtA
14 stoweidlem57.14 φatTaA
15 stoweidlem57.15 φrTtTrtqAqrqt
16 stoweidlem57.16 φBClsdJ
17 stoweidlem57.17 φDClsdJ
18 stoweidlem57.18 φBD=
19 stoweidlem57.19 φD
20 stoweidlem57.20 φE+
21 stoweidlem57.21 φE<13
22 1 nfcri tsD
23 3 22 nfan tφsD
24 10 adantr φsDJComp
25 11 adantr φsDAC
26 12 3adant1r φsDfAgAtTft+gtA
27 13 3adant1r φsDfAgAtTftgtA
28 14 adantlr φsDatTaA
29 15 adantlr φsDrTtTrtqAqrqt
30 cmptop JCompJTop
31 7 iscld JTopBClsdJBTTBJ
32 10 30 31 3syl φBClsdJBTTBJ
33 16 32 mpbid φBTTBJ
34 33 simprd φTBJ
35 9 34 eqeltrid φUJ
36 35 adantr φsDUJ
37 7 cldss DClsdJDT
38 17 37 syl φDT
39 38 sselda φsDsT
40 disjr BD=sD¬sB
41 18 40 sylib φsD¬sB
42 41 r19.21bi φsD¬sB
43 39 42 eldifd φsDsTB
44 43 9 eleqtrrdi φsDsU
45 2 23 6 24 7 8 25 26 27 28 29 36 44 stoweidlem56 φsDwJswwUe+hAtT0htht1twht<etTU1e<ht
46 simpl wJswwUe+hAtT0htht1twht<etTU1e<htwJ
47 simprll wJswwUe+hAtT0htht1twht<etTU1e<htsw
48 simprr wJswwUe+hAtT0htht1twht<etTU1e<hte+hAtT0htht1twht<etTU1e<ht
49 5 reqabi wVwJe+hAtT0htht1twht<etTU1e<ht
50 46 48 49 sylanbrc wJswwUe+hAtT0htht1twht<etTU1e<htwV
51 46 47 50 jca32 wJswwUe+hAtT0htht1twht<etTU1e<htwJswwV
52 51 reximi2 wJswwUe+hAtT0htht1twht<etTU1e<htwJswwV
53 rexex wJswwVwswwV
54 45 52 53 3syl φsDwswwV
55 nfcv _ws
56 nfrab1 _wwJ|e+hAtT0htht1twht<etTU1e<ht
57 5 56 nfcxfr _wV
58 55 57 elunif sVwswwV
59 54 58 sylibr φsDsV
60 59 ex φsDsV
61 60 ssrdv φDV
62 cmpcld JCompDClsdJJ𝑡DComp
63 10 17 62 syl2anc φJ𝑡DComp
64 10 30 syl φJTop
65 7 cmpsub JTopDTJ𝑡DCompk𝒫JDku𝒫kFinDu
66 64 38 65 syl2anc φJ𝑡DCompk𝒫JDku𝒫kFinDu
67 63 66 mpbid φk𝒫JDku𝒫kFinDu
68 ssrab2 wJ|e+hAtT0htht1twht<etTU1e<htJ
69 5 68 eqsstri VJ
70 5 10 rabexd φVV
71 elpwg VVV𝒫JVJ
72 70 71 syl φV𝒫JVJ
73 69 72 mpbiri φV𝒫J
74 unieq k=Vk=V
75 74 sseq2d k=VDkDV
76 pweq k=V𝒫k=𝒫V
77 76 ineq1d k=V𝒫kFin=𝒫VFin
78 77 rexeqdv k=Vu𝒫kFinDuu𝒫VFinDu
79 75 78 imbi12d k=VDku𝒫kFinDuDVu𝒫VFinDu
80 79 rspccva k𝒫JDku𝒫kFinDuV𝒫JDVu𝒫VFinDu
81 67 73 80 syl2anc φDVu𝒫VFinDu
82 61 81 mpd φu𝒫VFinDu
83 elinel1 u𝒫VFinu𝒫V
84 elpwi u𝒫VuV
85 84 ssdifssd u𝒫VuV
86 vex uV
87 difexg uVuV
88 86 87 ax-mp uV
89 88 elpw u𝒫VuV
90 85 89 sylibr u𝒫Vu𝒫V
91 83 90 syl u𝒫VFinu𝒫V
92 elinel2 u𝒫VFinuFin
93 diffi uFinuFin
94 92 93 syl u𝒫VFinuFin
95 91 94 elind u𝒫VFinu𝒫VFin
96 95 3ad2ant2 φu𝒫VFinDuu𝒫VFin
97 unidif0 u=u
98 97 sseq2i DuDu
99 98 biimpri DuDu
100 99 3ad2ant3 φu𝒫VFinDuDu
101 eldifsni wuw
102 101 rgen wuw
103 102 a1i φu𝒫VFinDuwuw
104 unieq r=ur=u
105 104 sseq2d r=uDrDu
106 raleq r=uwrwwuw
107 105 106 anbi12d r=uDrwrwDuwuw
108 107 rspcev u𝒫VFinDuwuwr𝒫VFinDrwrw
109 96 100 103 108 syl12anc φu𝒫VFinDur𝒫VFinDrwrw
110 109 rexlimdv3a φu𝒫VFinDur𝒫VFinDrwrw
111 82 110 mpd φr𝒫VFinDrwrw
112 nfv hφ
113 nfcv _h+
114 nfre1 hhAtT0htht1twht<etTU1e<ht
115 113 114 nfralw he+hAtT0htht1twht<etTU1e<ht
116 nfcv _hJ
117 115 116 nfrabw _hwJ|e+hAtT0htht1twht<etTU1e<ht
118 5 117 nfcxfr _hV
119 118 nfpw _h𝒫V
120 nfcv _hFin
121 119 120 nfin _h𝒫VFin
122 121 nfcri hr𝒫VFin
123 nfv hDrwrw
124 112 122 123 nf3an hφr𝒫VFinDrwrw
125 nfcv _t+
126 nfcv _tA
127 nfra1 ttT0htht1
128 nfra1 ttwht<e
129 nfra1 ttTU1e<ht
130 127 128 129 nf3an ttT0htht1twht<etTU1e<ht
131 126 130 nfrexw thAtT0htht1twht<etTU1e<ht
132 125 131 nfralw te+hAtT0htht1twht<etTU1e<ht
133 nfcv _tJ
134 132 133 nfrabw _twJ|e+hAtT0htht1twht<etTU1e<ht
135 5 134 nfcxfr _tV
136 135 nfpw _t𝒫V
137 nfcv _tFin
138 136 137 nfin _t𝒫VFin
139 138 nfcri tr𝒫VFin
140 nfcv _tr
141 1 140 nfss tDr
142 nfv twrw
143 141 142 nfan tDrwrw
144 3 139 143 nf3an tφr𝒫VFinDrwrw
145 nfv wφ
146 57 nfpw _w𝒫V
147 nfcv _wFin
148 146 147 nfin _w𝒫VFin
149 148 nfcri wr𝒫VFin
150 nfv wDr
151 nfra1 wwrw
152 150 151 nfan wDrwrw
153 145 149 152 nf3an wφr𝒫VFinDrwrw
154 simp2 φr𝒫VFinDrwrwr𝒫VFin
155 simp3l φr𝒫VFinDrwrwDr
156 19 3ad2ant1 φr𝒫VFinDrwrwD
157 20 3ad2ant1 φr𝒫VFinDrwrwE+
158 33 simpld φBT
159 158 3ad2ant1 φr𝒫VFinDrwrwBT
160 70 3ad2ant1 φr𝒫VFinDrwrwVV
161 retop topGenran.Top
162 6 161 eqeltri KTop
163 cnfex JTopKTopJCnKV
164 64 162 163 sylancl φJCnKV
165 11 8 sseqtrdi φAJCnK
166 164 165 ssexd φAV
167 166 3ad2ant1 φr𝒫VFinDrwrwAV
168 124 144 153 9 4 5 154 155 156 157 159 160 167 stoweidlem39 φr𝒫VFinDrwrwmvv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
169 168 rexlimdv3a φr𝒫VFinDrwrwmvv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
170 111 169 mpd φmvv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
171 nfv iφm
172 nfv iv:1mV
173 nfv iDranv
174 nfv iy:1mY
175 nfra1 ii1mtviyit<EmtB1Em<yit
176 174 175 nfan iy:1mYi1mtviyit<EmtB1Em<yit
177 176 nfex iyy:1mYi1mtviyit<EmtB1Em<yit
178 172 173 177 nf3an iv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
179 171 178 nfan iφmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
180 nfv tm
181 3 180 nfan tφm
182 nfcv _tv
183 nfcv _t1m
184 182 183 135 nff tv:1mV
185 nfcv _tranv
186 1 185 nfss tDranv
187 nfcv _ty
188 127 126 nfrabw _thA|tT0htht1
189 4 188 nfcxfr _tY
190 187 183 189 nff ty:1mY
191 nfra1 ttviyit<Em
192 nfra1 ttB1Em<yit
193 191 192 nfan ttviyit<EmtB1Em<yit
194 183 193 nfralw ti1mtviyit<EmtB1Em<yit
195 190 194 nfan ty:1mYi1mtviyit<EmtB1Em<yit
196 195 nfex tyy:1mYi1mtviyit<EmtB1Em<yit
197 184 186 196 nf3an tv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
198 181 197 nfan tφmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
199 nfv yφm
200 nfv yv:1mV
201 nfv yDranv
202 nfe1 yyy:1mYi1mtviyit<EmtB1Em<yit
203 200 201 202 nf3an yv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
204 199 203 nfan yφmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
205 nfv wφm
206 nfcv _wv
207 nfcv _w1m
208 206 207 57 nff wv:1mV
209 nfv wDranv
210 nfv wyy:1mYi1mtviyit<EmtB1Em<yit
211 208 209 210 nf3an wv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
212 205 211 nfan wφmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yit
213 eqid hA|tT0htht1=hA|tT0htht1
214 eqid fhA|tT0htht1,ghA|tT0htht1tTftgt=fhA|tT0htht1,ghA|tT0htht1tTftgt
215 eqid tTi1myit=tTi1myit
216 eqid tTseq1×tTi1myittm=tTseq1×tTi1myittm
217 simp1ll φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitfAgAφ
218 217 13 syld3an1 φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitfAgAtTftgtA
219 11 sselda φfAfC
220 6 7 8 219 fcnre φfAf:T
221 220 ad4ant14 φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitfAf:T
222 simplr φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitm
223 simpr1 φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitv:1mV
224 7 cldss BClsdJBT
225 16 224 syl φBT
226 225 ad2antrr φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitBT
227 simpr2 φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitDranv
228 38 ad2antrr φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitDT
229 feq3 Y=hA|tT0htht1y:1mYy:1mhA|tT0htht1
230 4 229 ax-mp y:1mYy:1mhA|tT0htht1
231 230 biimpi y:1mYy:1mhA|tT0htht1
232 231 anim1i y:1mYi1mtviyit<EmtB1Em<yity:1mhA|tT0htht1i1mtviyit<EmtB1Em<yit
233 232 eximi yy:1mYi1mtviyit<EmtB1Em<yityy:1mhA|tT0htht1i1mtviyit<EmtB1Em<yit
234 233 3ad2ant3 v:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yityy:1mhA|tT0htht1i1mtviyit<EmtB1Em<yit
235 234 adantl φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yityy:1mhA|tT0htht1i1mtviyit<EmtB1Em<yit
236 10 uniexd φJV
237 7 236 eqeltrid φTV
238 237 ad2antrr φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitTV
239 20 ad2antrr φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitE+
240 21 ad2antrr φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitE<13
241 179 198 204 212 7 213 214 215 216 5 218 221 222 223 226 227 228 235 238 239 240 stoweidlem54 φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitxAtT0xtxt1tDxt<EtB1E<xt
242 241 ex φmv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitxAtT0xtxt1tDxt<EtB1E<xt
243 242 exlimdv φmvv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitxAtT0xtxt1tDxt<EtB1E<xt
244 243 rexlimdva φmvv:1mVDranvyy:1mYi1mtviyit<EmtB1Em<yitxAtT0xtxt1tDxt<EtB1E<xt
245 170 244 mpd φxAtT0xtxt1tDxt<EtB1E<xt