Metamath Proof Explorer


Theorem supminfxr

Description: The extended real suprema of a set of reals is the extended real negative of the extended real infima of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis supminfxr.1 φA
Assertion supminfxr φsupA*<=supx|xA*<

Proof

Step Hyp Ref Expression
1 supminfxr.1 φA
2 supeq1 A=supA*<=sup*<
3 xrsup0 sup*<=−∞
4 3 a1i A=sup*<=−∞
5 2 4 eqtrd A=supA*<=−∞
6 5 adantl φA=supA*<=−∞
7 eleq2 A=xAx
8 7 rabbidv A=x|xA=x|x
9 noel ¬x
10 9 a1i x¬x
11 10 rgen x¬x
12 rabeq0 x|x=x¬x
13 11 12 mpbir x|x=
14 13 a1i A=x|x=
15 8 14 eqtrd A=x|xA=
16 15 infeq1d A=supx|xA*<=sup*<
17 xrinf0 sup*<=+∞
18 17 a1i A=sup*<=+∞
19 16 18 eqtrd A=supx|xA*<=+∞
20 19 xnegeqd A=supx|xA*<=+∞
21 xnegpnf +∞=−∞
22 21 a1i A=+∞=−∞
23 20 22 eqtrd A=supx|xA*<=−∞
24 23 adantl φA=supx|xA*<=−∞
25 6 24 eqtr4d φA=supA*<=supx|xA*<
26 neqne ¬A=A
27 1 ad2antrr φAyzAzyA
28 simplr φAyzAzyA
29 simpr φAyzAzyyzAzy
30 negn0 AAx|xA
31 ublbneg yzAzyyzx|xAyz
32 ssrab2 x|xA
33 infrenegsup x|xAx|xAyzx|xAyzsupx|xA<=supw|wx|xA<
34 32 33 mp3an1 x|xAyzx|xAyzsupx|xA<=supw|wx|xA<
35 30 31 34 syl2an AAyzAzysupx|xA<=supw|wx|xA<
36 35 3impa AAyzAzysupx|xA<=supw|wx|xA<
37 elrabi yw|wx|xAy
38 37 adantl Ayw|wx|xAy
39 ssel2 AyAy
40 negeq w=yw=y
41 40 eleq1d w=ywx|xAyx|xA
42 41 elrab3 yyw|wx|xAyx|xA
43 renegcl yy
44 negeq x=yx=y
45 44 eleq1d x=yxAyA
46 45 elrab3 yyx|xAyA
47 43 46 syl yyx|xAyA
48 recn yy
49 48 negnegd yy=y
50 49 eleq1d yyAyA
51 42 47 50 3bitrd yyw|wx|xAyA
52 51 adantl Ayyw|wx|xAyA
53 38 39 52 eqrdav Aw|wx|xA=A
54 53 supeq1d Asupw|wx|xA<=supA<
55 54 3ad2ant1 AAyzAzysupw|wx|xA<=supA<
56 55 negeqd AAyzAzysupw|wx|xA<=supA<
57 36 56 eqtrd AAyzAzysupx|xA<=supA<
58 infrecl x|xAx|xAyzx|xAyzsupx|xA<
59 32 58 mp3an1 x|xAyzx|xAyzsupx|xA<
60 30 31 59 syl2an AAyzAzysupx|xA<
61 60 3impa AAyzAzysupx|xA<
62 suprcl AAyzAzysupA<
63 recn supx|xA<supx|xA<
64 recn supA<supA<
65 negcon2 supx|xA<supA<supx|xA<=supA<supA<=supx|xA<
66 63 64 65 syl2an supx|xA<supA<supx|xA<=supA<supA<=supx|xA<
67 61 62 66 syl2anc AAyzAzysupx|xA<=supA<supA<=supx|xA<
68 57 67 mpbid AAyzAzysupA<=supx|xA<
69 27 28 29 68 syl3anc φAyzAzysupA<=supx|xA<
70 supxrre AAyzAzysupA*<=supA<
71 27 28 29 70 syl3anc φAyzAzysupA*<=supA<
72 32 a1i φAyzAzyx|xA
73 27 28 30 syl2anc φAyzAzyx|xA
74 29 31 syl φAyzAzyyzx|xAyz
75 infxrre x|xAx|xAyzx|xAyzsupx|xA*<=supx|xA<
76 72 73 74 75 syl3anc φAyzAzysupx|xA*<=supx|xA<
77 76 xnegeqd φAyzAzysupx|xA*<=supx|xA<
78 1 60 sylanl1 φAyzAzysupx|xA<
79 78 rexnegd φAyzAzysupx|xA<=supx|xA<
80 77 79 eqtrd φAyzAzysupx|xA*<=supx|xA<
81 69 71 80 3eqtr4d φAyzAzysupA*<=supx|xA*<
82 simpr φ¬yzAzy¬yzAzy
83 simplr φyzAy
84 1 sselda φzAz
85 84 adantlr φyzAz
86 83 85 ltnled φyzAy<z¬zy
87 86 rexbidva φyzAy<zzA¬zy
88 rexnal zA¬zy¬zAzy
89 88 a1i φyzA¬zy¬zAzy
90 87 89 bitrd φyzAy<z¬zAzy
91 90 ralbidva φyzAy<zy¬zAzy
92 ralnex y¬zAzy¬yzAzy
93 92 a1i φy¬zAzy¬yzAzy
94 91 93 bitrd φyzAy<z¬yzAzy
95 94 adantr φ¬yzAzyyzAy<z¬yzAzy
96 82 95 mpbird φ¬yzAzyyzAy<z
97 xnegmnf −∞=+∞
98 97 eqcomi +∞=−∞
99 98 a1i φyzAy<z+∞=−∞
100 simpr φyzAy<zyzAy<z
101 ressxr *
102 101 a1i φ*
103 1 102 sstrd φA*
104 supxrunb2 A*yzAy<zsupA*<=+∞
105 103 104 syl φyzAy<zsupA*<=+∞
106 105 adantr φyzAy<zyzAy<zsupA*<=+∞
107 100 106 mpbid φyzAy<zsupA*<=+∞
108 renegcl vv
109 108 adantl yzAy<zvv
110 simpl yzAy<zvyzAy<z
111 breq1 y=vy<zv<z
112 111 rexbidv y=vzAy<zzAv<z
113 112 rspcva vyzAy<zzAv<z
114 109 110 113 syl2anc yzAy<zvzAv<z
115 114 adantll φyzAy<zvzAv<z
116 negeq x=zx=z
117 116 eleq1d x=zxAzA
118 84 renegcld φzAz
119 118 ad4ant13 φvzAv<zz
120 84 recnd φzAz
121 120 negnegd φzAz=z
122 simpr φzAzA
123 121 122 eqeltrd φzAzA
124 123 ad4ant13 φvzAv<zzA
125 117 119 124 elrabd φvzAv<zzx|xA
126 simpr φvzAv<zv<z
127 108 ad3antlr φvzAv<zv
128 84 ad4ant13 φvzAv<zz
129 127 128 ltnegd φvzAv<zv<zz<v
130 126 129 mpbid φvzAv<zz<v
131 simpllr φvzAv<zv
132 recn vv
133 negneg vv=v
134 131 132 133 3syl φvzAv<zv=v
135 130 134 breqtrd φvzAv<zz<v
136 breq1 w=zw<vz<v
137 136 rspcev zx|xAz<vwx|xAw<v
138 125 135 137 syl2anc φvzAv<zwx|xAw<v
139 138 rexlimdva2 φvzAv<zwx|xAw<v
140 139 adantlr φyzAy<zvzAv<zwx|xAw<v
141 115 140 mpd φyzAy<zvwx|xAw<v
142 141 ralrimiva φyzAy<zvwx|xAw<v
143 32 101 sstri x|xA*
144 infxrunb2 x|xA*vwx|xAw<vsupx|xA*<=−∞
145 143 144 ax-mp vwx|xAw<vsupx|xA*<=−∞
146 142 145 sylib φyzAy<zsupx|xA*<=−∞
147 146 xnegeqd φyzAy<zsupx|xA*<=−∞
148 99 107 147 3eqtr4d φyzAy<zsupA*<=supx|xA*<
149 96 148 syldan φ¬yzAzysupA*<=supx|xA*<
150 149 adantlr φA¬yzAzysupA*<=supx|xA*<
151 81 150 pm2.61dan φAsupA*<=supx|xA*<
152 26 151 sylan2 φ¬A=supA*<=supx|xA*<
153 25 152 pm2.61dan φsupA*<=supx|xA*<