Metamath Proof Explorer


Theorem uniioombllem2

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by Mario Carneiro, 11-Dec-2016) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypotheses uniioombl.1 φ F : 2
uniioombl.2 φ Disj x . F x
uniioombl.3 S = seq 1 + abs F
uniioombl.a A = ran . F
uniioombl.e φ vol * E
uniioombl.c φ C +
uniioombl.g φ G : 2
uniioombl.s φ E ran . G
uniioombl.t T = seq 1 + abs G
uniioombl.v φ sup ran T * < vol * E + C
uniioombllem2.h H = z . F z . G J
uniioombllem2.k K = x ran . if x = 0 0 sup x * < sup x * <
Assertion uniioombllem2 φ J seq 1 + vol * H vol * . G J A

Proof

Step Hyp Ref Expression
1 uniioombl.1 φ F : 2
2 uniioombl.2 φ Disj x . F x
3 uniioombl.3 S = seq 1 + abs F
4 uniioombl.a A = ran . F
5 uniioombl.e φ vol * E
6 uniioombl.c φ C +
7 uniioombl.g φ G : 2
8 uniioombl.s φ E ran . G
9 uniioombl.t T = seq 1 + abs G
10 uniioombl.v φ sup ran T * < vol * E + C
11 uniioombllem2.h H = z . F z . G J
12 uniioombllem2.k K = x ran . if x = 0 0 sup x * < sup x * <
13 nnuz = 1
14 eqid seq 1 + abs K H = seq 1 + abs K H
15 1zzd φ J 1
16 eqidd φ J n abs K H n = abs K H n
17 1 2 3 4 5 6 7 8 9 10 uniioombllem2a φ J z . F z . G J ran .
18 11 a1i φ J H = z . F z . G J
19 12 ioorf K : ran . * × *
20 19 a1i φ J K : ran . * × *
21 20 feqmptd φ J K = y ran . K y
22 fveq2 y = . F z . G J K y = K . F z . G J
23 17 18 21 22 fmptco φ J K H = z K . F z . G J
24 inss2 . F z . G J . G J
25 inss2 2 2
26 7 ffvelrnda φ J G J 2
27 25 26 sselid φ J G J 2
28 1st2nd2 G J 2 G J = 1 st G J 2 nd G J
29 27 28 syl φ J G J = 1 st G J 2 nd G J
30 29 fveq2d φ J . G J = . 1 st G J 2 nd G J
31 df-ov 1 st G J 2 nd G J = . 1 st G J 2 nd G J
32 30 31 eqtr4di φ J . G J = 1 st G J 2 nd G J
33 ioossre 1 st G J 2 nd G J
34 32 33 eqsstrdi φ J . G J
35 32 fveq2d φ J vol * . G J = vol * 1 st G J 2 nd G J
36 ovolfcl G : 2 J 1 st G J 2 nd G J 1 st G J 2 nd G J
37 7 36 sylan φ J 1 st G J 2 nd G J 1 st G J 2 nd G J
38 ovolioo 1 st G J 2 nd G J 1 st G J 2 nd G J vol * 1 st G J 2 nd G J = 2 nd G J 1 st G J
39 37 38 syl φ J vol * 1 st G J 2 nd G J = 2 nd G J 1 st G J
40 35 39 eqtrd φ J vol * . G J = 2 nd G J 1 st G J
41 37 simp2d φ J 2 nd G J
42 37 simp1d φ J 1 st G J
43 41 42 resubcld φ J 2 nd G J 1 st G J
44 40 43 eqeltrd φ J vol * . G J
45 ovolsscl . F z . G J . G J . G J vol * . G J vol * . F z . G J
46 24 34 44 45 mp3an2i φ J vol * . F z . G J
47 46 adantr φ J z vol * . F z . G J
48 12 ioorcl . F z . G J ran . vol * . F z . G J K . F z . G J 2
49 17 47 48 syl2anc φ J z K . F z . G J 2
50 23 49 fmpt3d φ J K H : 2
51 eqid abs K H = abs K H
52 51 ovolfsf K H : 2 abs K H : 0 +∞
53 50 52 syl φ J abs K H : 0 +∞
54 53 ffvelrnda φ J n abs K H n 0 +∞
55 elrege0 abs K H n 0 +∞ abs K H n 0 abs K H n
56 54 55 sylib φ J n abs K H n 0 abs K H n
57 56 simpld φ J n abs K H n
58 56 simprd φ J n 0 abs K H n
59 23 fveq1d φ J K H z = z K . F z . G J z
60 fvex K . F z . G J V
61 eqid z K . F z . G J = z K . F z . G J
62 61 fvmpt2 z K . F z . G J V z K . F z . G J z = K . F z . G J
63 60 62 mpan2 z z K . F z . G J z = K . F z . G J
64 59 63 sylan9eq φ J z K H z = K . F z . G J
65 64 fveq2d φ J z . K H z = . K . F z . G J
66 12 ioorinv . F z . G J ran . . K . F z . G J = . F z . G J
67 17 66 syl φ J z . K . F z . G J = . F z . G J
68 65 67 eqtrd φ J z . K H z = . F z . G J
69 68 ralrimiva φ J z . K H z = . F z . G J
70 2fveq3 z = x . K H z = . K H x
71 2fveq3 z = x . F z = . F x
72 71 ineq1d z = x . F z . G J = . F x . G J
73 70 72 eqeq12d z = x . K H z = . F z . G J . K H x = . F x . G J
74 73 rspccva z . K H z = . F z . G J x . K H x = . F x . G J
75 69 74 sylan φ J x . K H x = . F x . G J
76 inss1 . F x . G J . F x
77 75 76 eqsstrdi φ J x . K H x . F x
78 77 ralrimiva φ J x . K H x . F x
79 2 adantr φ J Disj x . F x
80 disjss2 x . K H x . F x Disj x . F x Disj x . K H x
81 78 79 80 sylc φ J Disj x . K H x
82 50 81 14 uniioovol φ J vol * ran . K H = sup ran seq 1 + abs K H * <
83 67 mpteq2dva φ J z . K . F z . G J = z . F z . G J
84 rexpssxrxp 2 * × *
85 25 84 sstri 2 * × *
86 85 49 sselid φ J z K . F z . G J * × *
87 ioof . : * × * 𝒫
88 87 a1i φ J . : * × * 𝒫
89 88 feqmptd φ J . = y * × * . y
90 fveq2 y = K . F z . G J . y = . K . F z . G J
91 86 23 89 90 fmptco φ J . K H = z . K . F z . G J
92 83 91 18 3eqtr4d φ J . K H = H
93 92 rneqd φ J ran . K H = ran H
94 93 unieqd φ J ran . K H = ran H
95 fvex . F z V
96 95 inex1 . F z . G J V
97 11 fvmpt2 z . F z . G J V H z = . F z . G J
98 96 97 mpan2 z H z = . F z . G J
99 incom . F z . G J = . G J . F z
100 98 99 eqtrdi z H z = . G J . F z
101 100 iuneq2i z H z = z . G J . F z
102 iunin2 z . G J . F z = . G J z . F z
103 101 102 eqtri z H z = . G J z . F z
104 17 11 fmptd φ J H : ran .
105 104 ffnd φ J H Fn
106 fniunfv H Fn z H z = ran H
107 105 106 syl φ J z H z = ran H
108 103 107 eqtr3id φ J . G J z . F z = ran H
109 1 adantr φ J F : 2
110 fvco3 F : 2 z . F z = . F z
111 109 110 sylan φ J z . F z = . F z
112 111 iuneq2dv φ J z . F z = z . F z
113 ffn . : * × * 𝒫 . Fn * × *
114 87 113 ax-mp . Fn * × *
115 fss F : 2 2 * × * F : * × *
116 109 85 115 sylancl φ J F : * × *
117 fnfco . Fn * × * F : * × * . F Fn
118 114 116 117 sylancr φ J . F Fn
119 fniunfv . F Fn z . F z = ran . F
120 118 119 syl φ J z . F z = ran . F
121 120 4 eqtr4di φ J z . F z = A
122 112 121 eqtr3d φ J z . F z = A
123 122 ineq2d φ J . G J z . F z = . G J A
124 94 108 123 3eqtr2d φ J ran . K H = . G J A
125 124 fveq2d φ J vol * ran . K H = vol * . G J A
126 82 125 eqtr3d φ J sup ran seq 1 + abs K H * < = vol * . G J A
127 inss1 . G J A . G J
128 ovolsscl . G J A . G J . G J vol * . G J vol * . G J A
129 127 34 44 128 mp3an2i φ J vol * . G J A
130 126 129 eqeltrd φ J sup ran seq 1 + abs K H * <
131 51 14 ovolsf K H : 2 seq 1 + abs K H : 0 +∞
132 50 131 syl φ J seq 1 + abs K H : 0 +∞
133 132 frnd φ J ran seq 1 + abs K H 0 +∞
134 icossxr 0 +∞ *
135 133 134 sstrdi φ J ran seq 1 + abs K H *
136 132 ffnd φ J seq 1 + abs K H Fn
137 fnfvelrn seq 1 + abs K H Fn y seq 1 + abs K H y ran seq 1 + abs K H
138 136 137 sylan φ J y seq 1 + abs K H y ran seq 1 + abs K H
139 supxrub ran seq 1 + abs K H * seq 1 + abs K H y ran seq 1 + abs K H seq 1 + abs K H y sup ran seq 1 + abs K H * <
140 135 138 139 syl2an2r φ J y seq 1 + abs K H y sup ran seq 1 + abs K H * <
141 140 ralrimiva φ J y seq 1 + abs K H y sup ran seq 1 + abs K H * <
142 brralrspcev sup ran seq 1 + abs K H * < y seq 1 + abs K H y sup ran seq 1 + abs K H * < x y seq 1 + abs K H y x
143 130 141 142 syl2anc φ J x y seq 1 + abs K H y x
144 13 14 15 16 57 58 143 isumsup2 φ J seq 1 + abs K H sup ran seq 1 + abs K H <
145 51 ovolfs2 K H : 2 abs K H = vol * . K H
146 50 145 syl φ J abs K H = vol * . K H
147 coass vol * . K H = vol * . K H
148 92 coeq2d φ J vol * . K H = vol * H
149 147 148 eqtrid φ J vol * . K H = vol * H
150 146 149 eqtrd φ J abs K H = vol * H
151 150 seqeq3d φ J seq 1 + abs K H = seq 1 + vol * H
152 rge0ssre 0 +∞
153 133 152 sstrdi φ J ran seq 1 + abs K H
154 1nn 1
155 132 fdmd φ J dom seq 1 + abs K H =
156 154 155 eleqtrrid φ J 1 dom seq 1 + abs K H
157 156 ne0d φ J dom seq 1 + abs K H
158 dm0rn0 dom seq 1 + abs K H = ran seq 1 + abs K H =
159 158 necon3bii dom seq 1 + abs K H ran seq 1 + abs K H
160 157 159 sylib φ J ran seq 1 + abs K H
161 breq1 z = seq 1 + abs K H y z x seq 1 + abs K H y x
162 161 ralrn seq 1 + abs K H Fn z ran seq 1 + abs K H z x y seq 1 + abs K H y x
163 136 162 syl φ J z ran seq 1 + abs K H z x y seq 1 + abs K H y x
164 163 rexbidv φ J x z ran seq 1 + abs K H z x x y seq 1 + abs K H y x
165 143 164 mpbird φ J x z ran seq 1 + abs K H z x
166 supxrre ran seq 1 + abs K H ran seq 1 + abs K H x z ran seq 1 + abs K H z x sup ran seq 1 + abs K H * < = sup ran seq 1 + abs K H <
167 153 160 165 166 syl3anc φ J sup ran seq 1 + abs K H * < = sup ran seq 1 + abs K H <
168 167 126 eqtr3d φ J sup ran seq 1 + abs K H < = vol * . G J A
169 144 151 168 3brtr3d φ J seq 1 + vol * H vol * . G J A