Metamath Proof Explorer


Theorem vmalogdivsum2

Description: The sum sum_ n <_ x , Lam ( n ) log ( x / n ) / n is asymptotic to log ^ 2 ( x ) / 2 + O ( log x ) . Exercise 9.1.7 of Shapiro, p. 336. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion vmalogdivsum2 x1+∞n=1xΛnnlogxnlogxlogx2𝑂1

Proof

Step Hyp Ref Expression
1 fzfid x1+∞1xFin
2 elfznn k1xk
3 2 adantl x1+∞k1xk
4 3 nnrpd x1+∞k1xk+
5 4 relogcld x1+∞k1xlogk
6 5 3 nndivred x1+∞k1xlogkk
7 1 6 fsumrecl x1+∞k=1xlogkk
8 7 recnd x1+∞k=1xlogkk
9 elioore x1+∞x
10 9 adantl x1+∞x
11 1rp 1+
12 11 a1i x1+∞1+
13 1red x1+∞1
14 eliooord x1+∞1<xx<+∞
15 14 adantl x1+∞1<xx<+∞
16 15 simpld x1+∞1<x
17 13 10 16 ltled x1+∞1x
18 10 12 17 rpgecld x1+∞x+
19 18 relogcld x1+∞logx
20 19 resqcld x1+∞logx2
21 20 rehalfcld x1+∞logx22
22 21 recnd x1+∞logx22
23 19 recnd x1+∞logx
24 10 16 rplogcld x1+∞logx+
25 24 rpne0d x1+∞logx0
26 8 22 23 25 divsubdird x1+∞k=1xlogkklogx22logx=k=1xlogkklogxlogx22logx
27 7 21 resubcld x1+∞k=1xlogkklogx22
28 27 recnd x1+∞k=1xlogkklogx22
29 28 23 25 divrecd x1+∞k=1xlogkklogx22logx=k=1xlogkklogx221logx
30 20 recnd x1+∞logx2
31 2cnd x1+∞2
32 2ne0 20
33 32 a1i x1+∞20
34 30 31 23 33 25 divdiv32d x1+∞logx22logx=logx2logx2
35 23 sqvald x1+∞logx2=logxlogx
36 35 oveq1d x1+∞logx2logx=logxlogxlogx
37 23 23 25 divcan3d x1+∞logxlogxlogx=logx
38 36 37 eqtrd x1+∞logx2logx=logx
39 38 oveq1d x1+∞logx2logx2=logx2
40 34 39 eqtrd x1+∞logx22logx=logx2
41 40 oveq2d x1+∞k=1xlogkklogxlogx22logx=k=1xlogkklogxlogx2
42 26 29 41 3eqtr3rd x1+∞k=1xlogkklogxlogx2=k=1xlogkklogx221logx
43 42 mpteq2dva x1+∞k=1xlogkklogxlogx2=x1+∞k=1xlogkklogx221logx
44 24 rprecred x1+∞1logx
45 18 ex x1+∞x+
46 45 ssrdv 1+∞+
47 eqid x+k=1xlogkklogx22=x+k=1xlogkklogx22
48 47 logdivsum x+k=1xlogkklogx22:+x+k=1xlogkklogx22domx+k=1xlogkklogx2211+e1x+k=1xlogkklogx2211log11
49 48 simp2i x+k=1xlogkklogx22dom
50 rlimdmo1 x+k=1xlogkklogx22domx+k=1xlogkklogx22𝑂1
51 49 50 mp1i x+k=1xlogkklogx22𝑂1
52 46 51 o1res2 x1+∞k=1xlogkklogx22𝑂1
53 divlogrlim x1+∞1logx0
54 rlimo1 x1+∞1logx0x1+∞1logx𝑂1
55 53 54 mp1i x1+∞1logx𝑂1
56 27 44 52 55 o1mul2 x1+∞k=1xlogkklogx221logx𝑂1
57 43 56 eqeltrd x1+∞k=1xlogkklogxlogx2𝑂1
58 8 23 25 divcld x1+∞k=1xlogkklogx
59 23 halfcld x1+∞logx2
60 58 59 subcld x1+∞k=1xlogkklogxlogx2
61 elfznn n1xn
62 61 adantl x1+∞n1xn
63 vmacl nΛn
64 62 63 syl x1+∞n1xΛn
65 64 62 nndivred x1+∞n1xΛnn
66 18 adantr x1+∞n1xx+
67 62 nnrpd x1+∞n1xn+
68 66 67 rpdivcld x1+∞n1xxn+
69 68 relogcld x1+∞n1xlogxn
70 65 69 remulcld x1+∞n1xΛnnlogxn
71 1 70 fsumrecl x1+∞n=1xΛnnlogxn
72 71 recnd x1+∞n=1xΛnnlogxn
73 24 rpcnd x1+∞logx
74 72 73 25 divcld x1+∞n=1xΛnnlogxnlogx
75 73 halfcld x1+∞logx2
76 74 75 subcld x1+∞n=1xΛnnlogxnlogxlogx2
77 58 74 59 nnncan2d x1+∞k=1xlogkklogx-logx2-n=1xΛnnlogxnlogxlogx2=k=1xlogkklogxn=1xΛnnlogxnlogx
78 8 72 23 25 divsubdird x1+∞k=1xlogkkn=1xΛnnlogxnlogx=k=1xlogkklogxn=1xΛnnlogxnlogx
79 fzfid x1+∞n1x1xnFin
80 64 adantr x1+∞n1xm1xnΛn
81 62 adantr x1+∞n1xm1xnn
82 elfznn m1xnm
83 82 adantl x1+∞n1xm1xnm
84 81 83 nnmulcld x1+∞n1xm1xnnm
85 80 84 nndivred x1+∞n1xm1xnΛnnm
86 79 85 fsumrecl x1+∞n1xm=1xnΛnnm
87 86 recnd x1+∞n1xm=1xnΛnnm
88 70 recnd x1+∞n1xΛnnlogxn
89 1 87 88 fsumsub x1+∞n=1xm=1xnΛnnmΛnnlogxn=n=1xm=1xnΛnnmn=1xΛnnlogxn
90 64 recnd x1+∞n1xΛn
91 62 nncnd x1+∞n1xn
92 62 nnne0d x1+∞n1xn0
93 90 91 92 divcld x1+∞n1xΛnn
94 83 nnrecred x1+∞n1xm1xn1m
95 79 94 fsumrecl x1+∞n1xm=1xn1m
96 95 recnd x1+∞n1xm=1xn1m
97 69 recnd x1+∞n1xlogxn
98 93 96 97 subdid x1+∞n1xΛnnm=1xn1mlogxn=Λnnm=1xn1mΛnnlogxn
99 90 adantr x1+∞n1xm1xnΛn
100 91 adantr x1+∞n1xm1xnn
101 83 nncnd x1+∞n1xm1xnm
102 92 adantr x1+∞n1xm1xnn0
103 83 nnne0d x1+∞n1xm1xnm0
104 99 100 101 102 103 divdiv1d x1+∞n1xm1xnΛnnm=Λnnm
105 99 100 102 divcld x1+∞n1xm1xnΛnn
106 105 101 103 divrecd x1+∞n1xm1xnΛnnm=Λnn1m
107 104 106 eqtr3d x1+∞n1xm1xnΛnnm=Λnn1m
108 107 sumeq2dv x1+∞n1xm=1xnΛnnm=m=1xnΛnn1m
109 101 103 reccld x1+∞n1xm1xn1m
110 79 93 109 fsummulc2 x1+∞n1xΛnnm=1xn1m=m=1xnΛnn1m
111 108 110 eqtr4d x1+∞n1xm=1xnΛnnm=Λnnm=1xn1m
112 111 oveq1d x1+∞n1xm=1xnΛnnmΛnnlogxn=Λnnm=1xn1mΛnnlogxn
113 98 112 eqtr4d x1+∞n1xΛnnm=1xn1mlogxn=m=1xnΛnnmΛnnlogxn
114 113 sumeq2dv x1+∞n=1xΛnnm=1xn1mlogxn=n=1xm=1xnΛnnmΛnnlogxn
115 vmasum kny|ykΛn=logk
116 3 115 syl x1+∞k1xny|ykΛn=logk
117 116 oveq1d x1+∞k1xny|ykΛnk=logkk
118 fzfid x1+∞k1x1kFin
119 dvdsssfz1 ky|yk1k
120 3 119 syl x1+∞k1xy|yk1k
121 118 120 ssfid x1+∞k1xy|ykFin
122 3 nncnd x1+∞k1xk
123 ssrab2 y|yk
124 simprr x1+∞k1xny|ykny|yk
125 123 124 sselid x1+∞k1xny|ykn
126 125 63 syl x1+∞k1xny|ykΛn
127 126 recnd x1+∞k1xny|ykΛn
128 127 anassrs x1+∞k1xny|ykΛn
129 3 nnne0d x1+∞k1xk0
130 121 122 128 129 fsumdivc x1+∞k1xny|ykΛnk=ny|ykΛnk
131 117 130 eqtr3d x1+∞k1xlogkk=ny|ykΛnk
132 131 sumeq2dv x1+∞k=1xlogkk=k=1xny|ykΛnk
133 oveq2 k=nmΛnk=Λnnm
134 2 ad2antrl x1+∞k1xny|ykk
135 134 nncnd x1+∞k1xny|ykk
136 134 nnne0d x1+∞k1xny|ykk0
137 127 135 136 divcld x1+∞k1xny|ykΛnk
138 133 10 137 dvdsflsumcom x1+∞k=1xny|ykΛnk=n=1xm=1xnΛnnm
139 132 138 eqtrd x1+∞k=1xlogkk=n=1xm=1xnΛnnm
140 139 oveq1d x1+∞k=1xlogkkn=1xΛnnlogxn=n=1xm=1xnΛnnmn=1xΛnnlogxn
141 89 114 140 3eqtr4rd x1+∞k=1xlogkkn=1xΛnnlogxn=n=1xΛnnm=1xn1mlogxn
142 141 oveq1d x1+∞k=1xlogkkn=1xΛnnlogxnlogx=n=1xΛnnm=1xn1mlogxnlogx
143 77 78 142 3eqtr2d x1+∞k=1xlogkklogx-logx2-n=1xΛnnlogxnlogxlogx2=n=1xΛnnm=1xn1mlogxnlogx
144 143 mpteq2dva x1+∞k=1xlogkklogx-logx2-n=1xΛnnlogxnlogxlogx2=x1+∞n=1xΛnnm=1xn1mlogxnlogx
145 1red 1
146 1 65 fsumrecl x1+∞n=1xΛnn
147 146 24 rerpdivcld x1+∞n=1xΛnnlogx
148 ioossre 1+∞
149 ax-1cn 1
150 o1const 1+∞1x1+∞1𝑂1
151 148 149 150 mp2an x1+∞1𝑂1
152 151 a1i x1+∞1𝑂1
153 147 recnd x1+∞n=1xΛnnlogx
154 12 rpcnd x1+∞1
155 146 recnd x1+∞n=1xΛnn
156 155 23 23 25 divsubdird x1+∞n=1xΛnnlogxlogx=n=1xΛnnlogxlogxlogx
157 155 23 subcld x1+∞n=1xΛnnlogx
158 157 23 25 divrecd x1+∞n=1xΛnnlogxlogx=n=1xΛnnlogx1logx
159 23 25 dividd x1+∞logxlogx=1
160 159 oveq2d x1+∞n=1xΛnnlogxlogxlogx=n=1xΛnnlogx1
161 156 158 160 3eqtr3rd x1+∞n=1xΛnnlogx1=n=1xΛnnlogx1logx
162 161 mpteq2dva x1+∞n=1xΛnnlogx1=x1+∞n=1xΛnnlogx1logx
163 146 19 resubcld x1+∞n=1xΛnnlogx
164 vmadivsum x+n=1xΛnnlogx𝑂1
165 164 a1i x+n=1xΛnnlogx𝑂1
166 46 165 o1res2 x1+∞n=1xΛnnlogx𝑂1
167 163 44 166 55 o1mul2 x1+∞n=1xΛnnlogx1logx𝑂1
168 162 167 eqeltrd x1+∞n=1xΛnnlogx1𝑂1
169 153 154 168 o1dif x1+∞n=1xΛnnlogx𝑂1x1+∞1𝑂1
170 152 169 mpbird x1+∞n=1xΛnnlogx𝑂1
171 147 170 o1lo1d x1+∞n=1xΛnnlogx𝑂1
172 95 69 resubcld x1+∞n1xm=1xn1mlogxn
173 65 172 remulcld x1+∞n1xΛnnm=1xn1mlogxn
174 1 173 fsumrecl x1+∞n=1xΛnnm=1xn1mlogxn
175 174 24 rerpdivcld x1+∞n=1xΛnnm=1xn1mlogxnlogx
176 1red x1+∞n1x1
177 vmage0 n0Λn
178 62 177 syl x1+∞n1x0Λn
179 64 67 178 divge0d x1+∞n1x0Λnn
180 68 rpred x1+∞n1xxn
181 91 mullidd x1+∞n1x1n=n
182 fznnfl xn1xnnx
183 10 182 syl x1+∞n1xnnx
184 183 simplbda x1+∞n1xnx
185 181 184 eqbrtrd x1+∞n1x1nx
186 10 adantr x1+∞n1xx
187 176 186 67 lemuldivd x1+∞n1x1nx1xn
188 185 187 mpbid x1+∞n1x1xn
189 harmonicubnd xn1xnm=1xn1mlogxn+1
190 180 188 189 syl2anc x1+∞n1xm=1xn1mlogxn+1
191 95 69 176 lesubadd2d x1+∞n1xm=1xn1mlogxn1m=1xn1mlogxn+1
192 190 191 mpbird x1+∞n1xm=1xn1mlogxn1
193 172 176 65 179 192 lemul2ad x1+∞n1xΛnnm=1xn1mlogxnΛnn1
194 93 mulridd x1+∞n1xΛnn1=Λnn
195 193 194 breqtrd x1+∞n1xΛnnm=1xn1mlogxnΛnn
196 1 173 65 195 fsumle x1+∞n=1xΛnnm=1xn1mlogxnn=1xΛnn
197 174 146 24 196 lediv1dd x1+∞n=1xΛnnm=1xn1mlogxnlogxn=1xΛnnlogx
198 197 adantrr x1+∞1xn=1xΛnnm=1xn1mlogxnlogxn=1xΛnnlogx
199 145 171 147 175 198 lo1le x1+∞n=1xΛnnm=1xn1mlogxnlogx𝑂1
200 0red 0
201 harmoniclbnd xn+logxnm=1xn1m
202 68 201 syl x1+∞n1xlogxnm=1xn1m
203 95 69 subge0d x1+∞n1x0m=1xn1mlogxnlogxnm=1xn1m
204 202 203 mpbird x1+∞n1x0m=1xn1mlogxn
205 65 172 179 204 mulge0d x1+∞n1x0Λnnm=1xn1mlogxn
206 1 173 205 fsumge0 x1+∞0n=1xΛnnm=1xn1mlogxn
207 174 24 206 divge0d x1+∞0n=1xΛnnm=1xn1mlogxnlogx
208 175 200 207 o1lo12 x1+∞n=1xΛnnm=1xn1mlogxnlogx𝑂1x1+∞n=1xΛnnm=1xn1mlogxnlogx𝑂1
209 199 208 mpbird x1+∞n=1xΛnnm=1xn1mlogxnlogx𝑂1
210 144 209 eqeltrd x1+∞k=1xlogkklogx-logx2-n=1xΛnnlogxnlogxlogx2𝑂1
211 60 76 210 o1dif x1+∞k=1xlogkklogxlogx2𝑂1x1+∞n=1xΛnnlogxnlogxlogx2𝑂1
212 57 211 mpbid x1+∞n=1xΛnnlogxnlogxlogx2𝑂1
213 212 mptru x1+∞n=1xΛnnlogxnlogxlogx2𝑂1