| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem80.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem80.xre |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem80.a |
|- ( ph -> A e. RR ) |
| 4 |
|
fourierdlem80.b |
|- ( ph -> B e. RR ) |
| 5 |
|
fourierdlem80.ab |
|- ( ph -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
| 6 |
|
fourierdlem80.n0 |
|- ( ph -> -. 0 e. ( A [,] B ) ) |
| 7 |
|
fourierdlem80.c |
|- ( ph -> C e. RR ) |
| 8 |
|
fourierdlem80.o |
|- O = ( s e. ( A [,] B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 9 |
|
fourierdlem80.i |
|- I = ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) |
| 10 |
|
fourierdlem80.fbdioo |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> E. w e. RR A. t e. I ( abs ` ( F ` t ) ) <_ w ) |
| 11 |
|
fourierdlem80.fdvbdioo |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) |
| 12 |
|
fourierdlem80.sf |
|- ( ph -> S : ( 0 ... N ) --> ( A [,] B ) ) |
| 13 |
|
fourierdlem80.slt |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( S ` j ) < ( S ` ( j + 1 ) ) ) |
| 14 |
|
fourierdlem80.sjss |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) C_ ( A [,] B ) ) |
| 15 |
|
fourierdlem80.relioo |
|- ( ( ( ph /\ r e. ( A [,] B ) ) /\ -. r e. ran S ) -> E. k e. ( 0 ..^ N ) r e. ( ( S ` k ) (,) ( S ` ( k + 1 ) ) ) ) |
| 16 |
|
fdv |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( F |` I ) ) : I --> RR ) |
| 17 |
|
fourierdlem80.y |
|- Y = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 18 |
|
fourierdlem80.ch |
|- ( ch <-> ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) |
| 19 |
|
oveq2 |
|- ( s = t -> ( X + s ) = ( X + t ) ) |
| 20 |
19
|
fveq2d |
|- ( s = t -> ( F ` ( X + s ) ) = ( F ` ( X + t ) ) ) |
| 21 |
20
|
oveq1d |
|- ( s = t -> ( ( F ` ( X + s ) ) - C ) = ( ( F ` ( X + t ) ) - C ) ) |
| 22 |
|
oveq1 |
|- ( s = t -> ( s / 2 ) = ( t / 2 ) ) |
| 23 |
22
|
fveq2d |
|- ( s = t -> ( sin ` ( s / 2 ) ) = ( sin ` ( t / 2 ) ) ) |
| 24 |
23
|
oveq2d |
|- ( s = t -> ( 2 x. ( sin ` ( s / 2 ) ) ) = ( 2 x. ( sin ` ( t / 2 ) ) ) ) |
| 25 |
21 24
|
oveq12d |
|- ( s = t -> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) |
| 26 |
25
|
cbvmptv |
|- ( s e. ( A [,] B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) |
| 27 |
8 26
|
eqtr2i |
|- ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) = O |
| 28 |
27
|
oveq2i |
|- ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) = ( RR _D O ) |
| 29 |
28
|
dmeqi |
|- dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) = dom ( RR _D O ) |
| 30 |
29
|
ineq2i |
|- ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) = ( ran S i^i dom ( RR _D O ) ) |
| 31 |
30
|
sneqi |
|- { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } = { ( ran S i^i dom ( RR _D O ) ) } |
| 32 |
31
|
uneq1i |
|- ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 33 |
|
snfi |
|- { ( ran S i^i dom ( RR _D O ) ) } e. Fin |
| 34 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 35 |
|
eqid |
|- ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 36 |
35
|
rnmptfi |
|- ( ( 0 ..^ N ) e. Fin -> ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. Fin ) |
| 37 |
34 36
|
ax-mp |
|- ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. Fin |
| 38 |
|
unfi |
|- ( ( { ( ran S i^i dom ( RR _D O ) ) } e. Fin /\ ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. Fin ) -> ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) e. Fin ) |
| 39 |
33 37 38
|
mp2an |
|- ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) e. Fin |
| 40 |
39
|
a1i |
|- ( ph -> ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) e. Fin ) |
| 41 |
32 40
|
eqeltrid |
|- ( ph -> ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) e. Fin ) |
| 42 |
|
id |
|- ( s e. U. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> s e. U. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 43 |
32
|
unieqi |
|- U. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 44 |
42 43
|
eleqtrdi |
|- ( s e. U. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 45 |
|
simpl |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ph ) |
| 46 |
|
uniun |
|- U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( U. { ( ran S i^i dom ( RR _D O ) ) } u. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 47 |
46
|
eleq2i |
|- ( s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) <-> s e. ( U. { ( ran S i^i dom ( RR _D O ) ) } u. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 48 |
|
elun |
|- ( s e. ( U. { ( ran S i^i dom ( RR _D O ) ) } u. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) <-> ( s e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 49 |
47 48
|
sylbb |
|- ( s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> ( s e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( s e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 51 |
|
ovex |
|- ( 0 ... N ) e. _V |
| 52 |
51
|
a1i |
|- ( ph -> ( 0 ... N ) e. _V ) |
| 53 |
12 52
|
fexd |
|- ( ph -> S e. _V ) |
| 54 |
|
rnexg |
|- ( S e. _V -> ran S e. _V ) |
| 55 |
|
inex1g |
|- ( ran S e. _V -> ( ran S i^i dom ( RR _D O ) ) e. _V ) |
| 56 |
|
unisng |
|- ( ( ran S i^i dom ( RR _D O ) ) e. _V -> U. { ( ran S i^i dom ( RR _D O ) ) } = ( ran S i^i dom ( RR _D O ) ) ) |
| 57 |
53 54 55 56
|
4syl |
|- ( ph -> U. { ( ran S i^i dom ( RR _D O ) ) } = ( ran S i^i dom ( RR _D O ) ) ) |
| 58 |
57
|
eleq2d |
|- ( ph -> ( s e. U. { ( ran S i^i dom ( RR _D O ) ) } <-> s e. ( ran S i^i dom ( RR _D O ) ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( s e. U. { ( ran S i^i dom ( RR _D O ) ) } <-> s e. ( ran S i^i dom ( RR _D O ) ) ) ) |
| 60 |
59
|
orbi1d |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( ( s e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) <-> ( s e. ( ran S i^i dom ( RR _D O ) ) \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) ) |
| 61 |
50 60
|
mpbid |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( s e. ( ran S i^i dom ( RR _D O ) ) \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 62 |
|
dvf |
|- ( RR _D O ) : dom ( RR _D O ) --> CC |
| 63 |
62
|
a1i |
|- ( s e. ( ran S i^i dom ( RR _D O ) ) -> ( RR _D O ) : dom ( RR _D O ) --> CC ) |
| 64 |
|
elinel2 |
|- ( s e. ( ran S i^i dom ( RR _D O ) ) -> s e. dom ( RR _D O ) ) |
| 65 |
63 64
|
ffvelcdmd |
|- ( s e. ( ran S i^i dom ( RR _D O ) ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ s e. ( ran S i^i dom ( RR _D O ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 67 |
|
ovex |
|- ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) e. _V |
| 68 |
67
|
dfiun3 |
|- U_ j e. ( 0 ..^ N ) ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) = U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 69 |
68
|
eleq2i |
|- ( s e. U_ j e. ( 0 ..^ N ) ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) <-> s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 70 |
69
|
biimpri |
|- ( s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. U_ j e. ( 0 ..^ N ) ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 71 |
70
|
adantl |
|- ( ( ph /\ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> s e. U_ j e. ( 0 ..^ N ) ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 72 |
|
eliun |
|- ( s e. U_ j e. ( 0 ..^ N ) ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) <-> E. j e. ( 0 ..^ N ) s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 73 |
71 72
|
sylib |
|- ( ( ph /\ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> E. j e. ( 0 ..^ N ) s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 74 |
|
nfv |
|- F/ j ph |
| 75 |
|
nfmpt1 |
|- F/_ j ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 76 |
75
|
nfrn |
|- F/_ j ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 77 |
76
|
nfuni |
|- F/_ j U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 78 |
77
|
nfcri |
|- F/ j s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 79 |
74 78
|
nfan |
|- F/ j ( ph /\ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 80 |
|
nfv |
|- F/ j ( ( RR _D O ) ` s ) e. CC |
| 81 |
62
|
a1i |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( RR _D O ) : dom ( RR _D O ) --> CC ) |
| 82 |
8
|
reseq1i |
|- ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( ( s e. ( A [,] B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 83 |
|
ioossicc |
|- ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) |
| 84 |
83 14
|
sstrid |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( A [,] B ) ) |
| 85 |
84
|
resmptd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( s e. ( A [,] B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 86 |
82 85
|
eqtrid |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 87 |
17 86
|
eqtr4id |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> Y = ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 88 |
87
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( RR _D Y ) = ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 89 |
|
ax-resscn |
|- RR C_ CC |
| 90 |
89
|
a1i |
|- ( ph -> RR C_ CC ) |
| 91 |
1
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> F : RR --> RR ) |
| 92 |
2
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> X e. RR ) |
| 93 |
3 4
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 94 |
93
|
sselda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. RR ) |
| 95 |
92 94
|
readdcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( X + s ) e. RR ) |
| 96 |
91 95
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( F ` ( X + s ) ) e. RR ) |
| 97 |
96
|
recnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( F ` ( X + s ) ) e. CC ) |
| 98 |
7
|
recnd |
|- ( ph -> C e. CC ) |
| 99 |
98
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> C e. CC ) |
| 100 |
97 99
|
subcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
| 101 |
|
2cnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> 2 e. CC ) |
| 102 |
93 90
|
sstrd |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 103 |
102
|
sselda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. CC ) |
| 104 |
103
|
halfcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( s / 2 ) e. CC ) |
| 105 |
104
|
sincld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( sin ` ( s / 2 ) ) e. CC ) |
| 106 |
101 105
|
mulcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
| 107 |
|
2ne0 |
|- 2 =/= 0 |
| 108 |
107
|
a1i |
|- ( ( ph /\ s e. ( A [,] B ) ) -> 2 =/= 0 ) |
| 109 |
5
|
sselda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. ( -u _pi [,] _pi ) ) |
| 110 |
|
eqcom |
|- ( s = 0 <-> 0 = s ) |
| 111 |
110
|
biimpi |
|- ( s = 0 -> 0 = s ) |
| 112 |
111
|
adantl |
|- ( ( s e. ( A [,] B ) /\ s = 0 ) -> 0 = s ) |
| 113 |
|
simpl |
|- ( ( s e. ( A [,] B ) /\ s = 0 ) -> s e. ( A [,] B ) ) |
| 114 |
112 113
|
eqeltrd |
|- ( ( s e. ( A [,] B ) /\ s = 0 ) -> 0 e. ( A [,] B ) ) |
| 115 |
114
|
adantll |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ s = 0 ) -> 0 e. ( A [,] B ) ) |
| 116 |
6
|
ad2antrr |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ s = 0 ) -> -. 0 e. ( A [,] B ) ) |
| 117 |
115 116
|
pm2.65da |
|- ( ( ph /\ s e. ( A [,] B ) ) -> -. s = 0 ) |
| 118 |
117
|
neqned |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s =/= 0 ) |
| 119 |
|
fourierdlem44 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
| 120 |
109 118 119
|
syl2anc |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
| 121 |
101 105 108 120
|
mulne0d |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
| 122 |
100 106 121
|
divcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC ) |
| 123 |
122 8
|
fmptd |
|- ( ph -> O : ( A [,] B ) --> CC ) |
| 124 |
|
ioossre |
|- ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ RR |
| 125 |
124
|
a1i |
|- ( ph -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ RR ) |
| 126 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 127 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 128 |
126 127
|
dvres |
|- ( ( ( RR C_ CC /\ O : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ RR ) ) -> ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 129 |
90 123 93 125 128
|
syl22anc |
|- ( ph -> ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 130 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |
| 131 |
130
|
reseq2i |
|- ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 132 |
129 131
|
eqtrdi |
|- ( ph -> ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 133 |
132
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) = ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 134 |
88 133
|
eqtr2d |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( RR _D Y ) ) |
| 135 |
134
|
dmeqd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> dom ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = dom ( RR _D Y ) ) |
| 136 |
1
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> F : RR --> RR ) |
| 137 |
2
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> X e. RR ) |
| 138 |
93
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A [,] B ) C_ RR ) |
| 139 |
12
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> S : ( 0 ... N ) --> ( A [,] B ) ) |
| 140 |
|
elfzofz |
|- ( j e. ( 0 ..^ N ) -> j e. ( 0 ... N ) ) |
| 141 |
140
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> j e. ( 0 ... N ) ) |
| 142 |
139 141
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( S ` j ) e. ( A [,] B ) ) |
| 143 |
138 142
|
sseldd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( S ` j ) e. RR ) |
| 144 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ N ) -> ( j + 1 ) e. ( 0 ... N ) ) |
| 145 |
144
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. ( 0 ... N ) ) |
| 146 |
139 145
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( S ` ( j + 1 ) ) e. ( A [,] B ) ) |
| 147 |
138 146
|
sseldd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( S ` ( j + 1 ) ) e. RR ) |
| 148 |
9
|
feq2i |
|- ( ( RR _D ( F |` I ) ) : I --> RR <-> ( RR _D ( F |` I ) ) : ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) --> RR ) |
| 149 |
16 148
|
sylib |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( F |` I ) ) : ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) --> RR ) |
| 150 |
9
|
reseq2i |
|- ( F |` I ) = ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) |
| 151 |
150
|
oveq2i |
|- ( RR _D ( F |` I ) ) = ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) |
| 152 |
151
|
feq1i |
|- ( ( RR _D ( F |` I ) ) : ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) --> RR <-> ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) : ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) --> RR ) |
| 153 |
149 152
|
sylib |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) : ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) --> RR ) |
| 154 |
5
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
| 155 |
84 154
|
sstrd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 156 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> -. 0 e. ( A [,] B ) ) |
| 157 |
84 156
|
ssneldd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> -. 0 e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 158 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> C e. RR ) |
| 159 |
136 137 143 147 153 155 157 158 17
|
fourierdlem57 |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( RR _D Y ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> RR /\ ( RR _D Y ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) ) /\ ( RR _D ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( cos ` ( s / 2 ) ) ) ) |
| 160 |
159
|
simpli |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( RR _D Y ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> RR /\ ( RR _D Y ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) ) |
| 161 |
160
|
simpld |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( RR _D Y ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> RR ) |
| 162 |
|
fdm |
|- ( ( RR _D Y ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> RR -> dom ( RR _D Y ) = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 163 |
161 162
|
syl |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> dom ( RR _D Y ) = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 164 |
135 163
|
eqtr2d |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) = dom ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 165 |
|
resss |
|- ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) C_ ( RR _D O ) |
| 166 |
|
dmss |
|- ( ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) C_ ( RR _D O ) -> dom ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) C_ dom ( RR _D O ) ) |
| 167 |
165 166
|
mp1i |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> dom ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) C_ dom ( RR _D O ) ) |
| 168 |
164 167
|
eqsstrd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ dom ( RR _D O ) ) |
| 169 |
168
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ dom ( RR _D O ) ) |
| 170 |
|
simp3 |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 171 |
169 170
|
sseldd |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. dom ( RR _D O ) ) |
| 172 |
81 171
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 173 |
172
|
3exp |
|- ( ph -> ( j e. ( 0 ..^ N ) -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) ) ) |
| 174 |
173
|
adantr |
|- ( ( ph /\ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> ( j e. ( 0 ..^ N ) -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) ) ) |
| 175 |
79 80 174
|
rexlimd |
|- ( ( ph /\ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> ( E. j e. ( 0 ..^ N ) s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) ) |
| 176 |
73 175
|
mpd |
|- ( ( ph /\ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 177 |
66 176
|
jaodan |
|- ( ( ph /\ ( s e. ( ran S i^i dom ( RR _D O ) ) \/ s e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 178 |
45 61 177
|
syl2anc |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 179 |
178
|
abscld |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) |
| 180 |
44 179
|
sylan2 |
|- ( ( ph /\ s e. U. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) |
| 181 |
|
id |
|- ( r e. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> r e. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 182 |
181 32
|
eleqtrdi |
|- ( r e. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 183 |
|
elsni |
|- ( r e. { ( ran S i^i dom ( RR _D O ) ) } -> r = ( ran S i^i dom ( RR _D O ) ) ) |
| 184 |
|
simpr |
|- ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) -> r = ( ran S i^i dom ( RR _D O ) ) ) |
| 185 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
| 186 |
|
rnffi |
|- ( ( S : ( 0 ... N ) --> ( A [,] B ) /\ ( 0 ... N ) e. Fin ) -> ran S e. Fin ) |
| 187 |
12 185 186
|
syl2anc |
|- ( ph -> ran S e. Fin ) |
| 188 |
|
infi |
|- ( ran S e. Fin -> ( ran S i^i dom ( RR _D O ) ) e. Fin ) |
| 189 |
187 188
|
syl |
|- ( ph -> ( ran S i^i dom ( RR _D O ) ) e. Fin ) |
| 190 |
189
|
adantr |
|- ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) -> ( ran S i^i dom ( RR _D O ) ) e. Fin ) |
| 191 |
184 190
|
eqeltrd |
|- ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) -> r e. Fin ) |
| 192 |
|
nfv |
|- F/ s ph |
| 193 |
|
nfcv |
|- F/_ s ran S |
| 194 |
|
nfcv |
|- F/_ s RR |
| 195 |
|
nfcv |
|- F/_ s _D |
| 196 |
|
nfmpt1 |
|- F/_ s ( s e. ( A [,] B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 197 |
8 196
|
nfcxfr |
|- F/_ s O |
| 198 |
194 195 197
|
nfov |
|- F/_ s ( RR _D O ) |
| 199 |
198
|
nfdm |
|- F/_ s dom ( RR _D O ) |
| 200 |
193 199
|
nfin |
|- F/_ s ( ran S i^i dom ( RR _D O ) ) |
| 201 |
200
|
nfeq2 |
|- F/ s r = ( ran S i^i dom ( RR _D O ) ) |
| 202 |
192 201
|
nfan |
|- F/ s ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) |
| 203 |
|
simpr |
|- ( ( r = ( ran S i^i dom ( RR _D O ) ) /\ s e. r ) -> s e. r ) |
| 204 |
|
simpl |
|- ( ( r = ( ran S i^i dom ( RR _D O ) ) /\ s e. r ) -> r = ( ran S i^i dom ( RR _D O ) ) ) |
| 205 |
203 204
|
eleqtrd |
|- ( ( r = ( ran S i^i dom ( RR _D O ) ) /\ s e. r ) -> s e. ( ran S i^i dom ( RR _D O ) ) ) |
| 206 |
205 64
|
syl |
|- ( ( r = ( ran S i^i dom ( RR _D O ) ) /\ s e. r ) -> s e. dom ( RR _D O ) ) |
| 207 |
206
|
adantll |
|- ( ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) /\ s e. r ) -> s e. dom ( RR _D O ) ) |
| 208 |
62
|
ffvelcdmi |
|- ( s e. dom ( RR _D O ) -> ( ( RR _D O ) ` s ) e. CC ) |
| 209 |
208
|
abscld |
|- ( s e. dom ( RR _D O ) -> ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) |
| 210 |
207 209
|
syl |
|- ( ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) /\ s e. r ) -> ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) |
| 211 |
210
|
ex |
|- ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) -> ( s e. r -> ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) ) |
| 212 |
202 211
|
ralrimi |
|- ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) -> A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) |
| 213 |
|
fimaxre3 |
|- ( ( r e. Fin /\ A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) e. RR ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 214 |
191 212 213
|
syl2anc |
|- ( ( ph /\ r = ( ran S i^i dom ( RR _D O ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 215 |
183 214
|
sylan2 |
|- ( ( ph /\ r e. { ( ran S i^i dom ( RR _D O ) ) } ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 216 |
215
|
adantlr |
|- ( ( ( ph /\ r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) /\ r e. { ( ran S i^i dom ( RR _D O ) ) } ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 217 |
|
simpll |
|- ( ( ( ph /\ r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) /\ -. r e. { ( ran S i^i dom ( RR _D O ) ) } ) -> ph ) |
| 218 |
|
elunnel1 |
|- ( ( r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) /\ -. r e. { ( ran S i^i dom ( RR _D O ) ) } ) -> r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 219 |
218
|
adantll |
|- ( ( ( ph /\ r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) /\ -. r e. { ( ran S i^i dom ( RR _D O ) ) } ) -> r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 220 |
|
vex |
|- r e. _V |
| 221 |
35
|
elrnmpt |
|- ( r e. _V -> ( r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) <-> E. j e. ( 0 ..^ N ) r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 222 |
220 221
|
ax-mp |
|- ( r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) <-> E. j e. ( 0 ..^ N ) r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 223 |
222
|
biimpi |
|- ( r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> E. j e. ( 0 ..^ N ) r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 224 |
223
|
adantl |
|- ( ( ph /\ r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> E. j e. ( 0 ..^ N ) r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 225 |
76
|
nfcri |
|- F/ j r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 226 |
74 225
|
nfan |
|- F/ j ( ph /\ r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 227 |
|
nfv |
|- F/ j E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y |
| 228 |
|
reeanv |
|- ( E. w e. RR E. z e. RR ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) <-> ( E. w e. RR A. t e. I ( abs ` ( F ` t ) ) <_ w /\ E. z e. RR A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) |
| 229 |
10 11 228
|
sylanbrc |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> E. w e. RR E. z e. RR ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) |
| 230 |
|
simp1 |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> ( ph /\ j e. ( 0 ..^ N ) ) ) |
| 231 |
|
simp2l |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> w e. RR ) |
| 232 |
|
simp2r |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> z e. RR ) |
| 233 |
230 231 232
|
jca31 |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) ) |
| 234 |
|
simp3l |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> A. t e. I ( abs ` ( F ` t ) ) <_ w ) |
| 235 |
|
simp3r |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) |
| 236 |
233 234 235
|
jca31 |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) |
| 237 |
236 18
|
sylibr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> ch ) |
| 238 |
18
|
biimpi |
|- ( ch -> ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) |
| 239 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) -> ph ) |
| 240 |
238 239
|
syl |
|- ( ch -> ph ) |
| 241 |
240 1
|
syl |
|- ( ch -> F : RR --> RR ) |
| 242 |
240 2
|
syl |
|- ( ch -> X e. RR ) |
| 243 |
|
simp-4l |
|- ( ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) -> ( ph /\ j e. ( 0 ..^ N ) ) ) |
| 244 |
238 243
|
syl |
|- ( ch -> ( ph /\ j e. ( 0 ..^ N ) ) ) |
| 245 |
244 143
|
syl |
|- ( ch -> ( S ` j ) e. RR ) |
| 246 |
244 147
|
syl |
|- ( ch -> ( S ` ( j + 1 ) ) e. RR ) |
| 247 |
244 13
|
syl |
|- ( ch -> ( S ` j ) < ( S ` ( j + 1 ) ) ) |
| 248 |
14 154
|
sstrd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 249 |
244 248
|
syl |
|- ( ch -> ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 250 |
14 156
|
ssneldd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> -. 0 e. ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) ) |
| 251 |
244 250
|
syl |
|- ( ch -> -. 0 e. ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) ) |
| 252 |
244 153
|
syl |
|- ( ch -> ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) : ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) --> RR ) |
| 253 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) -> w e. RR ) |
| 254 |
238 253
|
syl |
|- ( ch -> w e. RR ) |
| 255 |
238
|
simplrd |
|- ( ch -> A. t e. I ( abs ` ( F ` t ) ) <_ w ) |
| 256 |
|
id |
|- ( t e. ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) -> t e. ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) |
| 257 |
256 9
|
eleqtrrdi |
|- ( t e. ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) -> t e. I ) |
| 258 |
|
rspa |
|- ( ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ t e. I ) -> ( abs ` ( F ` t ) ) <_ w ) |
| 259 |
255 257 258
|
syl2an |
|- ( ( ch /\ t e. ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) -> ( abs ` ( F ` t ) ) <_ w ) |
| 260 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ w e. RR ) /\ z e. RR ) /\ A. t e. I ( abs ` ( F ` t ) ) <_ w ) /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) -> z e. RR ) |
| 261 |
238 260
|
syl |
|- ( ch -> z e. RR ) |
| 262 |
151
|
fveq1i |
|- ( ( RR _D ( F |` I ) ) ` t ) = ( ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) ` t ) |
| 263 |
262
|
fveq2i |
|- ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) = ( abs ` ( ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) ` t ) ) |
| 264 |
238
|
simprd |
|- ( ch -> A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) |
| 265 |
264
|
r19.21bi |
|- ( ( ch /\ t e. I ) -> ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) |
| 266 |
263 265
|
eqbrtrrid |
|- ( ( ch /\ t e. I ) -> ( abs ` ( ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) ` t ) ) <_ z ) |
| 267 |
257 266
|
sylan2 |
|- ( ( ch /\ t e. ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + ( S ` j ) ) (,) ( X + ( S ` ( j + 1 ) ) ) ) ) ) ` t ) ) <_ z ) |
| 268 |
240 7
|
syl |
|- ( ch -> C e. RR ) |
| 269 |
241 242 245 246 247 249 251 252 254 259 261 267 268 17
|
fourierdlem68 |
|- ( ch -> ( dom ( RR _D Y ) = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) /\ E. y e. RR A. s e. dom ( RR _D Y ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) ) |
| 270 |
269
|
simprd |
|- ( ch -> E. y e. RR A. s e. dom ( RR _D Y ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) |
| 271 |
269
|
simpld |
|- ( ch -> dom ( RR _D Y ) = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 272 |
271
|
raleqdv |
|- ( ch -> ( A. s e. dom ( RR _D Y ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y <-> A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) ) |
| 273 |
272
|
rexbidv |
|- ( ch -> ( E. y e. RR A. s e. dom ( RR _D Y ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y <-> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) ) |
| 274 |
270 273
|
mpbid |
|- ( ch -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) |
| 275 |
130
|
eqcomi |
|- ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 276 |
275
|
reseq2i |
|- ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 277 |
276
|
fveq1i |
|- ( ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` s ) = ( ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) |
| 278 |
|
fvres |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` s ) = ( ( RR _D O ) ` s ) ) |
| 279 |
278
|
adantl |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( ( RR _D O ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` s ) = ( ( RR _D O ) ` s ) ) |
| 280 |
244 84
|
syl |
|- ( ch -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( A [,] B ) ) |
| 281 |
280
|
resmptd |
|- ( ch -> ( ( s e. ( A [,] B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 282 |
82 281
|
eqtrid |
|- ( ch -> ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 283 |
17 282
|
eqtr4id |
|- ( ch -> Y = ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 284 |
283
|
oveq2d |
|- ( ch -> ( RR _D Y ) = ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 285 |
284
|
fveq1d |
|- ( ch -> ( ( RR _D Y ) ` s ) = ( ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) ) |
| 286 |
129
|
fveq1d |
|- ( ph -> ( ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) = ( ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) ) |
| 287 |
240 286
|
syl |
|- ( ch -> ( ( RR _D ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) = ( ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) ) |
| 288 |
285 287
|
eqtr2d |
|- ( ch -> ( ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) = ( ( RR _D Y ) ` s ) ) |
| 289 |
288
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( ( RR _D O ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ` s ) = ( ( RR _D Y ) ` s ) ) |
| 290 |
277 279 289
|
3eqtr3a |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( RR _D O ) ` s ) = ( ( RR _D Y ) ` s ) ) |
| 291 |
290
|
fveq2d |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( abs ` ( ( RR _D O ) ` s ) ) = ( abs ` ( ( RR _D Y ) ` s ) ) ) |
| 292 |
291
|
breq1d |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( abs ` ( ( RR _D O ) ` s ) ) <_ y <-> ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) ) |
| 293 |
292
|
ralbidva |
|- ( ch -> ( A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y <-> A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) ) |
| 294 |
293
|
rexbidv |
|- ( ch -> ( E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y <-> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D Y ) ` s ) ) <_ y ) ) |
| 295 |
274 294
|
mpbird |
|- ( ch -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 296 |
237 295
|
syl |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ ( w e. RR /\ z e. RR ) /\ ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) ) -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 297 |
296
|
3exp |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( w e. RR /\ z e. RR ) -> ( ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) ) |
| 298 |
297
|
rexlimdvv |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( E. w e. RR E. z e. RR ( A. t e. I ( abs ` ( F ` t ) ) <_ w /\ A. t e. I ( abs ` ( ( RR _D ( F |` I ) ) ` t ) ) <_ z ) -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) |
| 299 |
229 298
|
mpd |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 300 |
299
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 301 |
|
raleq |
|- ( r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y <-> A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) |
| 302 |
301
|
3ad2ant3 |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y <-> A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) |
| 303 |
302
|
rexbidv |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y <-> E. y e. RR A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) |
| 304 |
300 303
|
mpbird |
|- ( ( ph /\ j e. ( 0 ..^ N ) /\ r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 305 |
304
|
3exp |
|- ( ph -> ( j e. ( 0 ..^ N ) -> ( r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) ) |
| 306 |
305
|
adantr |
|- ( ( ph /\ r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> ( j e. ( 0 ..^ N ) -> ( r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) ) |
| 307 |
226 227 306
|
rexlimd |
|- ( ( ph /\ r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> ( E. j e. ( 0 ..^ N ) r = ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) ) |
| 308 |
224 307
|
mpd |
|- ( ( ph /\ r e. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 309 |
217 219 308
|
syl2anc |
|- ( ( ( ph /\ r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) /\ -. r e. { ( ran S i^i dom ( RR _D O ) ) } ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 310 |
216 309
|
pm2.61dan |
|- ( ( ph /\ r e. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 311 |
182 310
|
sylan2 |
|- ( ( ph /\ r e. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) -> E. y e. RR A. s e. r ( abs ` ( ( RR _D O ) ` s ) ) <_ y ) |
| 312 |
|
pm3.22 |
|- ( ( r e. dom ( RR _D O ) /\ r e. ran S ) -> ( r e. ran S /\ r e. dom ( RR _D O ) ) ) |
| 313 |
|
elin |
|- ( r e. ( ran S i^i dom ( RR _D O ) ) <-> ( r e. ran S /\ r e. dom ( RR _D O ) ) ) |
| 314 |
312 313
|
sylibr |
|- ( ( r e. dom ( RR _D O ) /\ r e. ran S ) -> r e. ( ran S i^i dom ( RR _D O ) ) ) |
| 315 |
314
|
adantll |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ r e. ran S ) -> r e. ( ran S i^i dom ( RR _D O ) ) ) |
| 316 |
57
|
eqcomd |
|- ( ph -> ( ran S i^i dom ( RR _D O ) ) = U. { ( ran S i^i dom ( RR _D O ) ) } ) |
| 317 |
316
|
ad2antrr |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ r e. ran S ) -> ( ran S i^i dom ( RR _D O ) ) = U. { ( ran S i^i dom ( RR _D O ) ) } ) |
| 318 |
315 317
|
eleqtrd |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ r e. ran S ) -> r e. U. { ( ran S i^i dom ( RR _D O ) ) } ) |
| 319 |
318
|
orcd |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ r e. ran S ) -> ( r e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 320 |
|
simpll |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> ph ) |
| 321 |
89
|
a1i |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> RR C_ CC ) |
| 322 |
123
|
adantr |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> O : ( A [,] B ) --> CC ) |
| 323 |
3
|
adantr |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> A e. RR ) |
| 324 |
4
|
adantr |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> B e. RR ) |
| 325 |
323 324
|
iccssred |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> ( A [,] B ) C_ RR ) |
| 326 |
321 322 325
|
dvbss |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> dom ( RR _D O ) C_ ( A [,] B ) ) |
| 327 |
|
simpr |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> r e. dom ( RR _D O ) ) |
| 328 |
326 327
|
sseldd |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> r e. ( A [,] B ) ) |
| 329 |
328
|
adantr |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> r e. ( A [,] B ) ) |
| 330 |
|
simpr |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> -. r e. ran S ) |
| 331 |
|
fveq2 |
|- ( j = k -> ( S ` j ) = ( S ` k ) ) |
| 332 |
|
oveq1 |
|- ( j = k -> ( j + 1 ) = ( k + 1 ) ) |
| 333 |
332
|
fveq2d |
|- ( j = k -> ( S ` ( j + 1 ) ) = ( S ` ( k + 1 ) ) ) |
| 334 |
331 333
|
oveq12d |
|- ( j = k -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) = ( ( S ` k ) (,) ( S ` ( k + 1 ) ) ) ) |
| 335 |
|
ovex |
|- ( ( S ` k ) (,) ( S ` ( k + 1 ) ) ) e. _V |
| 336 |
334 35 335
|
fvmpt |
|- ( k e. ( 0 ..^ N ) -> ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) = ( ( S ` k ) (,) ( S ` ( k + 1 ) ) ) ) |
| 337 |
336
|
eleq2d |
|- ( k e. ( 0 ..^ N ) -> ( r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) <-> r e. ( ( S ` k ) (,) ( S ` ( k + 1 ) ) ) ) ) |
| 338 |
337
|
rexbiia |
|- ( E. k e. ( 0 ..^ N ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) <-> E. k e. ( 0 ..^ N ) r e. ( ( S ` k ) (,) ( S ` ( k + 1 ) ) ) ) |
| 339 |
15 338
|
sylibr |
|- ( ( ( ph /\ r e. ( A [,] B ) ) /\ -. r e. ran S ) -> E. k e. ( 0 ..^ N ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) ) |
| 340 |
67 35
|
dmmpti |
|- dom ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( 0 ..^ N ) |
| 341 |
340
|
rexeqi |
|- ( E. k e. dom ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) <-> E. k e. ( 0 ..^ N ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) ) |
| 342 |
339 341
|
sylibr |
|- ( ( ( ph /\ r e. ( A [,] B ) ) /\ -. r e. ran S ) -> E. k e. dom ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) ) |
| 343 |
320 329 330 342
|
syl21anc |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> E. k e. dom ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) ) |
| 344 |
|
funmpt |
|- Fun ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
| 345 |
|
elunirn |
|- ( Fun ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) <-> E. k e. dom ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) ) ) |
| 346 |
344 345
|
mp1i |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> ( r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) <-> E. k e. dom ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) r e. ( ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ` k ) ) ) |
| 347 |
343 346
|
mpbird |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) |
| 348 |
347
|
olcd |
|- ( ( ( ph /\ r e. dom ( RR _D O ) ) /\ -. r e. ran S ) -> ( r e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 349 |
319 348
|
pm2.61dan |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> ( r e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 350 |
|
elun |
|- ( r e. ( U. { ( ran S i^i dom ( RR _D O ) ) } u. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) <-> ( r e. U. { ( ran S i^i dom ( RR _D O ) ) } \/ r e. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 351 |
349 350
|
sylibr |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> r e. ( U. { ( ran S i^i dom ( RR _D O ) ) } u. U. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 352 |
351 46
|
eleqtrrdi |
|- ( ( ph /\ r e. dom ( RR _D O ) ) -> r e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 353 |
352
|
ralrimiva |
|- ( ph -> A. r e. dom ( RR _D O ) r e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 354 |
|
dfss3 |
|- ( dom ( RR _D O ) C_ U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) <-> A. r e. dom ( RR _D O ) r e. U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 355 |
353 354
|
sylibr |
|- ( ph -> dom ( RR _D O ) C_ U. ( { ( ran S i^i dom ( RR _D O ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 356 |
355 43
|
sseqtrrdi |
|- ( ph -> dom ( RR _D O ) C_ U. ( { ( ran S i^i dom ( RR _D ( t e. ( A [,] B ) |-> ( ( ( F ` ( X + t ) ) - C ) / ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) ) ) } u. ran ( j e. ( 0 ..^ N ) |-> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) ) ) |
| 357 |
41 180 311 356
|
ssfiunibd |
|- ( ph -> E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D O ) ` s ) ) <_ b ) |