| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem80.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem80.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 3 |
|
fourierdlem80.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
fourierdlem80.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
fourierdlem80.ab |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( - π [,] π ) ) |
| 6 |
|
fourierdlem80.n0 |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 7 |
|
fourierdlem80.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 8 |
|
fourierdlem80.o |
⊢ 𝑂 = ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
| 9 |
|
fourierdlem80.i |
⊢ 𝐼 = ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 10 |
|
fourierdlem80.fbdioo |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
| 11 |
|
fourierdlem80.fdvbdioo |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 12 |
|
fourierdlem80.sf |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 13 |
|
fourierdlem80.slt |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 14 |
|
fourierdlem80.sjss |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 15 |
|
fourierdlem80.relioo |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
| 16 |
|
fdv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : 𝐼 ⟶ ℝ ) |
| 17 |
|
fourierdlem80.y |
⊢ 𝑌 = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
| 18 |
|
fourierdlem80.ch |
⊢ ( 𝜒 ↔ ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑡 ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 / 2 ) = ( 𝑡 / 2 ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( sin ‘ ( 𝑠 / 2 ) ) = ( sin ‘ ( 𝑡 / 2 ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) = ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) |
| 25 |
21 24
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) |
| 26 |
25
|
cbvmptv |
⊢ ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) |
| 27 |
8 26
|
eqtr2i |
⊢ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) = 𝑂 |
| 28 |
27
|
oveq2i |
⊢ ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) = ( ℝ D 𝑂 ) |
| 29 |
28
|
dmeqi |
⊢ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) = dom ( ℝ D 𝑂 ) |
| 30 |
29
|
ineq2i |
⊢ ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) |
| 31 |
30
|
sneqi |
⊢ { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } = { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } |
| 32 |
31
|
uneq1i |
⊢ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 33 |
|
snfi |
⊢ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∈ Fin |
| 34 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 35 |
|
eqid |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 36 |
35
|
rnmptfi |
⊢ ( ( 0 ..^ 𝑁 ) ∈ Fin → ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ Fin ) |
| 37 |
34 36
|
ax-mp |
⊢ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ Fin |
| 38 |
|
unfi |
⊢ ( ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∈ Fin ∧ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ Fin ) → ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin ) |
| 39 |
33 37 38
|
mp2an |
⊢ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin ) |
| 41 |
32 40
|
eqeltrid |
⊢ ( 𝜑 → ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ Fin ) |
| 42 |
|
id |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 43 |
32
|
unieqi |
⊢ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 44 |
42 43
|
eleqtrdi |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 45 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → 𝜑 ) |
| 46 |
|
uniun |
⊢ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 47 |
46
|
eleq2i |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ 𝑠 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 48 |
|
elun |
⊢ ( 𝑠 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 49 |
47 48
|
sylbb |
⊢ ( 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 51 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ V ) |
| 53 |
12 52
|
fexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 54 |
|
rnexg |
⊢ ( 𝑆 ∈ V → ran 𝑆 ∈ V ) |
| 55 |
|
inex1g |
⊢ ( ran 𝑆 ∈ V → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ V ) |
| 56 |
|
unisng |
⊢ ( ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ V → ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 57 |
53 54 55 56
|
4syl |
⊢ ( 𝜑 → ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 58 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ↔ 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ↔ 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ) |
| 60 |
59
|
orbi1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( ( 𝑠 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 61 |
50 60
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 62 |
|
dvf |
⊢ ( ℝ D 𝑂 ) : dom ( ℝ D 𝑂 ) ⟶ ℂ |
| 63 |
62
|
a1i |
⊢ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) → ( ℝ D 𝑂 ) : dom ( ℝ D 𝑂 ) ⟶ ℂ ) |
| 64 |
|
elinel2 |
⊢ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
| 65 |
63 64
|
ffvelcdmd |
⊢ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 67 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∈ V |
| 68 |
67
|
dfiun3 |
⊢ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 69 |
68
|
eleq2i |
⊢ ( 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 70 |
69
|
biimpri |
⊢ ( 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 72 |
|
eliun |
⊢ ( 𝑠 ∈ ∪ 𝑗 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 73 |
71 72
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 74 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 75 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 76 |
75
|
nfrn |
⊢ Ⅎ 𝑗 ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 77 |
76
|
nfuni |
⊢ Ⅎ 𝑗 ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 78 |
77
|
nfcri |
⊢ Ⅎ 𝑗 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 79 |
74 78
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 80 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ |
| 81 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ℝ D 𝑂 ) : dom ( ℝ D 𝑂 ) ⟶ ℂ ) |
| 82 |
8
|
reseq1i |
⊢ ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 83 |
|
ioossicc |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 84 |
83 14
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 85 |
84
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 86 |
82 85
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 87 |
17 86
|
eqtr4id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑌 = ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 88 |
87
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D 𝑌 ) = ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 89 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 90 |
89
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 91 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 92 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑋 ∈ ℝ ) |
| 93 |
3 4
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 94 |
93
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ℝ ) |
| 95 |
92 94
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 96 |
91 95
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
| 97 |
96
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 98 |
7
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 100 |
97 99
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ∈ ℂ ) |
| 101 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 2 ∈ ℂ ) |
| 102 |
93 90
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 103 |
102
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ℂ ) |
| 104 |
103
|
halfcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑠 / 2 ) ∈ ℂ ) |
| 105 |
104
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
| 106 |
101 105
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
| 107 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 108 |
107
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 2 ≠ 0 ) |
| 109 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ∈ ( - π [,] π ) ) |
| 110 |
|
eqcom |
⊢ ( 𝑠 = 0 ↔ 0 = 𝑠 ) |
| 111 |
110
|
biimpi |
⊢ ( 𝑠 = 0 → 0 = 𝑠 ) |
| 112 |
111
|
adantl |
⊢ ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑠 = 0 ) → 0 = 𝑠 ) |
| 113 |
|
simpl |
⊢ ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑠 = 0 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 114 |
112 113
|
eqeltrd |
⊢ ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 115 |
114
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 116 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑠 = 0 ) → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 117 |
115 116
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ¬ 𝑠 = 0 ) |
| 118 |
117
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑠 ≠ 0 ) |
| 119 |
|
fourierdlem44 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ 𝑠 ≠ 0 ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
| 120 |
109 118 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
| 121 |
101 105 108 120
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
| 122 |
100 106 121
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℂ ) |
| 123 |
122 8
|
fmptd |
⊢ ( 𝜑 → 𝑂 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 124 |
|
ioossre |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ℝ |
| 125 |
124
|
a1i |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ℝ ) |
| 126 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 127 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 128 |
126 127
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝑂 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 129 |
90 123 93 125 128
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 130 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 131 |
130
|
reseq2i |
⊢ ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 132 |
129 131
|
eqtrdi |
⊢ ( 𝜑 → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 134 |
88 133
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ℝ D 𝑌 ) ) |
| 135 |
134
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = dom ( ℝ D 𝑌 ) ) |
| 136 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 137 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) |
| 138 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 139 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 140 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 141 |
140
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ... 𝑁 ) ) |
| 142 |
139 141
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 143 |
138 142
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 144 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 145 |
144
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 146 |
139 145
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 147 |
138 146
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 148 |
9
|
feq2i |
⊢ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : 𝐼 ⟶ ℝ ↔ ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
| 149 |
16 148
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
| 150 |
9
|
reseq2i |
⊢ ( 𝐹 ↾ 𝐼 ) = ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 151 |
150
|
oveq2i |
⊢ ( ℝ D ( 𝐹 ↾ 𝐼 ) ) = ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 152 |
151
|
feq1i |
⊢ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ↔ ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
| 153 |
149 152
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
| 154 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( - π [,] π ) ) |
| 155 |
84 154
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 156 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 0 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 157 |
84 156
|
ssneldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 0 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 158 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ∈ ℝ ) |
| 159 |
136 137 143 147 153 155 157 158 17
|
fourierdlem57 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ ∧ ( ℝ D 𝑌 ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) ) ∧ ( ℝ D ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( cos ‘ ( 𝑠 / 2 ) ) ) ) |
| 160 |
159
|
simpli |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ ∧ ( ℝ D 𝑌 ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) ) |
| 161 |
160
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ ) |
| 162 |
|
fdm |
⊢ ( ( ℝ D 𝑌 ) : ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⟶ ℝ → dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 163 |
161 162
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 164 |
135 163
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 165 |
|
resss |
⊢ ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ℝ D 𝑂 ) |
| 166 |
|
dmss |
⊢ ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ ( ℝ D 𝑂 ) → dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
| 167 |
165 166
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → dom ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
| 168 |
164 167
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
| 169 |
168
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ dom ( ℝ D 𝑂 ) ) |
| 170 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 171 |
169 170
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
| 172 |
81 171
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 173 |
172
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) ) ) |
| 174 |
173
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) ) ) |
| 175 |
79 80 174
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) ) |
| 176 |
73 175
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 177 |
66 176
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∨ 𝑠 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 178 |
45 61 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 179 |
178
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
| 180 |
44 179
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
| 181 |
|
id |
⊢ ( 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 182 |
181 32
|
eleqtrdi |
⊢ ( 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 183 |
|
elsni |
⊢ ( 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } → 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 184 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 185 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
| 186 |
|
rnffi |
⊢ ( ( 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐴 [,] 𝐵 ) ∧ ( 0 ... 𝑁 ) ∈ Fin ) → ran 𝑆 ∈ Fin ) |
| 187 |
12 185 186
|
syl2anc |
⊢ ( 𝜑 → ran 𝑆 ∈ Fin ) |
| 188 |
|
infi |
⊢ ( ran 𝑆 ∈ Fin → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ Fin ) |
| 189 |
187 188
|
syl |
⊢ ( 𝜑 → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ Fin ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∈ Fin ) |
| 191 |
184 190
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → 𝑟 ∈ Fin ) |
| 192 |
|
nfv |
⊢ Ⅎ 𝑠 𝜑 |
| 193 |
|
nfcv |
⊢ Ⅎ 𝑠 ran 𝑆 |
| 194 |
|
nfcv |
⊢ Ⅎ 𝑠 ℝ |
| 195 |
|
nfcv |
⊢ Ⅎ 𝑠 D |
| 196 |
|
nfmpt1 |
⊢ Ⅎ 𝑠 ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
| 197 |
8 196
|
nfcxfr |
⊢ Ⅎ 𝑠 𝑂 |
| 198 |
194 195 197
|
nfov |
⊢ Ⅎ 𝑠 ( ℝ D 𝑂 ) |
| 199 |
198
|
nfdm |
⊢ Ⅎ 𝑠 dom ( ℝ D 𝑂 ) |
| 200 |
193 199
|
nfin |
⊢ Ⅎ 𝑠 ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) |
| 201 |
200
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) |
| 202 |
192 201
|
nfan |
⊢ Ⅎ 𝑠 ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 203 |
|
simpr |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ 𝑟 ) |
| 204 |
|
simpl |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 205 |
203 204
|
eleqtrd |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 206 |
205 64
|
syl |
⊢ ( ( 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
| 207 |
206
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ∧ 𝑠 ∈ 𝑟 ) → 𝑠 ∈ dom ( ℝ D 𝑂 ) ) |
| 208 |
62
|
ffvelcdmi |
⊢ ( 𝑠 ∈ dom ( ℝ D 𝑂 ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ∈ ℂ ) |
| 209 |
208
|
abscld |
⊢ ( 𝑠 ∈ dom ( ℝ D 𝑂 ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
| 210 |
207 209
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) ∧ 𝑠 ∈ 𝑟 ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
| 211 |
210
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ( 𝑠 ∈ 𝑟 → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) ) |
| 212 |
202 211
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) |
| 213 |
|
fimaxre3 |
⊢ ( ( 𝑟 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 214 |
191 212 213
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 = ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 215 |
183 214
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 216 |
215
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 217 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → 𝜑 ) |
| 218 |
|
elunnel1 |
⊢ ( ( 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 219 |
218
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 220 |
|
vex |
⊢ 𝑟 ∈ V |
| 221 |
35
|
elrnmpt |
⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 222 |
220 221
|
ax-mp |
⊢ ( 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 223 |
222
|
biimpi |
⊢ ( 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 224 |
223
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 225 |
76
|
nfcri |
⊢ Ⅎ 𝑗 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 226 |
74 225
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 227 |
|
nfv |
⊢ Ⅎ 𝑗 ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 |
| 228 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℝ ∃ 𝑧 ∈ ℝ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 229 |
10 11 228
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑤 ∈ ℝ ∃ 𝑧 ∈ ℝ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 230 |
|
simp1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 231 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → 𝑤 ∈ ℝ ) |
| 232 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → 𝑧 ∈ ℝ ) |
| 233 |
230 231 232
|
jca31 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ) |
| 234 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
| 235 |
|
simp3r |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 236 |
233 234 235
|
jca31 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 237 |
236 18
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → 𝜒 ) |
| 238 |
18
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
| 239 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → 𝜑 ) |
| 240 |
238 239
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
| 241 |
240 1
|
syl |
⊢ ( 𝜒 → 𝐹 : ℝ ⟶ ℝ ) |
| 242 |
240 2
|
syl |
⊢ ( 𝜒 → 𝑋 ∈ ℝ ) |
| 243 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 244 |
238 243
|
syl |
⊢ ( 𝜒 → ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 245 |
244 143
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 246 |
244 147
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 247 |
244 13
|
syl |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) < ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 248 |
14 154
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 249 |
244 248
|
syl |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 250 |
14 156
|
ssneldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 0 ∈ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 251 |
244 250
|
syl |
⊢ ( 𝜒 → ¬ 0 ∈ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 252 |
244 153
|
syl |
⊢ ( 𝜒 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) : ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ⟶ ℝ ) |
| 253 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → 𝑤 ∈ ℝ ) |
| 254 |
238 253
|
syl |
⊢ ( 𝜒 → 𝑤 ∈ ℝ ) |
| 255 |
238
|
simplrd |
⊢ ( 𝜒 → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
| 256 |
|
id |
⊢ ( 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 257 |
256 9
|
eleqtrrdi |
⊢ ( 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑡 ∈ 𝐼 ) |
| 258 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ 𝑡 ∈ 𝐼 ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
| 259 |
255 257 258
|
syl2an |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) |
| 260 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ) ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → 𝑧 ∈ ℝ ) |
| 261 |
238 260
|
syl |
⊢ ( 𝜒 → 𝑧 ∈ ℝ ) |
| 262 |
151
|
fveq1i |
⊢ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) = ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) |
| 263 |
262
|
fveq2i |
⊢ ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) ) |
| 264 |
238
|
simprd |
⊢ ( 𝜒 → ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 265 |
264
|
r19.21bi |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ 𝐼 ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 266 |
263 265
|
eqbrtrrid |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ 𝐼 ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 267 |
257 266
|
sylan2 |
⊢ ( ( 𝜒 ∧ 𝑡 ∈ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + ( 𝑆 ‘ 𝑗 ) ) (,) ( 𝑋 + ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
| 268 |
240 7
|
syl |
⊢ ( 𝜒 → 𝐶 ∈ ℝ ) |
| 269 |
241 242 245 246 247 249 251 252 254 259 261 267 268 17
|
fourierdlem68 |
⊢ ( 𝜒 → ( dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 270 |
269
|
simprd |
⊢ ( 𝜒 → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 271 |
269
|
simpld |
⊢ ( 𝜒 → dom ( ℝ D 𝑌 ) = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 272 |
271
|
raleqdv |
⊢ ( 𝜒 → ( ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 273 |
272
|
rexbidv |
⊢ ( 𝜒 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑌 ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 274 |
270 273
|
mpbid |
⊢ ( 𝜒 → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 275 |
130
|
eqcomi |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 276 |
275
|
reseq2i |
⊢ ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 277 |
276
|
fveq1i |
⊢ ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) |
| 278 |
|
fvres |
⊢ ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) |
| 279 |
278
|
adantl |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ( ℝ D 𝑂 ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) |
| 280 |
244 84
|
syl |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 281 |
280
|
resmptd |
⊢ ( 𝜒 → ( ( 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 282 |
82 281
|
eqtrid |
⊢ ( 𝜒 → ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 283 |
17 282
|
eqtr4id |
⊢ ( 𝜒 → 𝑌 = ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 284 |
283
|
oveq2d |
⊢ ( 𝜒 → ( ℝ D 𝑌 ) = ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 285 |
284
|
fveq1d |
⊢ ( 𝜒 → ( ( ℝ D 𝑌 ) ‘ 𝑠 ) = ( ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) ) |
| 286 |
129
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) ) |
| 287 |
240 286
|
syl |
⊢ ( 𝜒 → ( ( ℝ D ( 𝑂 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) ) |
| 288 |
285 287
|
eqtr2d |
⊢ ( 𝜒 → ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) |
| 289 |
288
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ( ℝ D 𝑂 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ 𝑠 ) = ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) |
| 290 |
277 279 289
|
3eqtr3a |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ℝ D 𝑂 ) ‘ 𝑠 ) = ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) |
| 291 |
290
|
fveq2d |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) = ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ) |
| 292 |
291
|
breq1d |
⊢ ( ( 𝜒 ∧ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 293 |
292
|
ralbidva |
⊢ ( 𝜒 → ( ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 294 |
293
|
rexbidv |
⊢ ( 𝜒 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑌 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 295 |
274 294
|
mpbird |
⊢ ( 𝜒 → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 296 |
237 295
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 297 |
296
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) ) |
| 298 |
297
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑤 ∈ ℝ ∃ 𝑧 ∈ ℝ ( ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( 𝐹 ‘ 𝑡 ) ) ≤ 𝑤 ∧ ∀ 𝑡 ∈ 𝐼 ( abs ‘ ( ( ℝ D ( 𝐹 ↾ 𝐼 ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 299 |
229 298
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 300 |
299
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 301 |
|
raleq |
⊢ ( 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ( ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 302 |
301
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 303 |
302
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 304 |
300 303
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 305 |
304
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) ) |
| 306 |
305
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝑁 ) → ( 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) ) |
| 307 |
226 227 306
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ( ∃ 𝑗 ∈ ( 0 ..^ 𝑁 ) 𝑟 = ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) ) |
| 308 |
224 307
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 309 |
217 219 308
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ∧ ¬ 𝑟 ∈ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 310 |
216 309
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 311 |
182 310
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑠 ∈ 𝑟 ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑦 ) |
| 312 |
|
pm3.22 |
⊢ ( ( 𝑟 ∈ dom ( ℝ D 𝑂 ) ∧ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ) |
| 313 |
|
elin |
⊢ ( 𝑟 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ↔ ( 𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ) |
| 314 |
312 313
|
sylibr |
⊢ ( ( 𝑟 ∈ dom ( ℝ D 𝑂 ) ∧ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 315 |
314
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) ) |
| 316 |
57
|
eqcomd |
⊢ ( 𝜑 → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) = ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) |
| 317 |
316
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) = ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) |
| 318 |
315 317
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ) |
| 319 |
318
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 320 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → 𝜑 ) |
| 321 |
89
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → ℝ ⊆ ℂ ) |
| 322 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑂 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 323 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝐴 ∈ ℝ ) |
| 324 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝐵 ∈ ℝ ) |
| 325 |
323 324
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 326 |
321 322 325
|
dvbss |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → dom ( ℝ D 𝑂 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 327 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ dom ( ℝ D 𝑂 ) ) |
| 328 |
326 327
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 329 |
328
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 330 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ¬ 𝑟 ∈ ran 𝑆 ) |
| 331 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ 𝑘 ) ) |
| 332 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) |
| 333 |
332
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( 𝑆 ‘ ( 𝑗 + 1 ) ) = ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) |
| 334 |
331 333
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
| 335 |
|
ovex |
⊢ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ∈ V |
| 336 |
334 35 335
|
fvmpt |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
| 337 |
336
|
eleq2d |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ↔ 𝑟 ∈ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 338 |
337
|
rexbiia |
⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑆 ‘ 𝑘 ) (,) ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) ) |
| 339 |
15 338
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
| 340 |
67 35
|
dmmpti |
⊢ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 0 ..^ 𝑁 ) |
| 341 |
340
|
rexeqi |
⊢ ( ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
| 342 |
339 341
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
| 343 |
320 329 330 342
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) |
| 344 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 345 |
|
elunirn |
⊢ ( Fun ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) → ( 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
| 346 |
344 345
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ∃ 𝑘 ∈ dom ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) 𝑟 ∈ ( ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
| 347 |
343 346
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 348 |
347
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) ∧ ¬ 𝑟 ∈ ran 𝑆 ) → ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 349 |
319 348
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 350 |
|
elun |
⊢ ( 𝑟 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ( 𝑟 ∈ ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∨ 𝑟 ∈ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 351 |
349 350
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ ( ∪ { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 352 |
351 46
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ dom ( ℝ D 𝑂 ) ) → 𝑟 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 353 |
352
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑟 ∈ dom ( ℝ D 𝑂 ) 𝑟 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 354 |
|
dfss3 |
⊢ ( dom ( ℝ D 𝑂 ) ⊆ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ↔ ∀ 𝑟 ∈ dom ( ℝ D 𝑂 ) 𝑟 ∈ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 355 |
353 354
|
sylibr |
⊢ ( 𝜑 → dom ( ℝ D 𝑂 ) ⊆ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D 𝑂 ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 356 |
355 43
|
sseqtrrdi |
⊢ ( 𝜑 → dom ( ℝ D 𝑂 ) ⊆ ∪ ( { ( ran 𝑆 ∩ dom ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑡 / 2 ) ) ) ) ) ) ) } ∪ ran ( 𝑗 ∈ ( 0 ..^ 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 357 |
41 180 311 356
|
ssfiunibd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ dom ( ℝ D 𝑂 ) ( abs ‘ ( ( ℝ D 𝑂 ) ‘ 𝑠 ) ) ≤ 𝑏 ) |