| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem28.1 |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) | 
						
							| 3 |  | poimirlem28.2 |  |-  ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) | 
						
							| 4 |  | poimirlem25.3 |  |-  ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 5 |  | poimirlem25.4 |  |-  ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 6 |  | poimirlem25.5 |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> N =/= [_ <. T , U >. / s ]_ C ) | 
						
							| 7 |  | neq0 |  |-  ( -. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) <-> E. t t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) | 
						
							| 8 |  | 2z |  |-  2 e. ZZ | 
						
							| 9 |  | iddvds |  |-  ( 2 e. ZZ -> 2 || 2 ) | 
						
							| 10 | 8 9 | ax-mp |  |-  2 || 2 | 
						
							| 11 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 12 | 10 11 | breqtri |  |-  2 || ( 1 + 1 ) | 
						
							| 13 |  | vex |  |-  t e. _V | 
						
							| 14 |  | fzfi |  |-  ( 0 ... N ) e. Fin | 
						
							| 15 |  | rabfi |  |-  ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin ) | 
						
							| 16 | 14 15 | ax-mp |  |-  { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin | 
						
							| 17 |  | diffi |  |-  ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin -> ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin ) | 
						
							| 18 | 16 17 | ax-mp |  |-  ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin | 
						
							| 19 |  | neldifsn |  |-  -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) | 
						
							| 20 | 18 19 | pm3.2i |  |-  ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin /\ -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) | 
						
							| 21 |  | hashunsng |  |-  ( t e. _V -> ( ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin /\ -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) -> ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) ) ) | 
						
							| 22 | 13 20 21 | mp2 |  |-  ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) | 
						
							| 23 |  | difsnid |  |-  ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) = { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) | 
						
							| 24 | 23 | fveq2d |  |-  ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) | 
						
							| 25 | 22 24 | eqtr3id |  |-  ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) | 
						
							| 27 |  | sneq |  |-  ( y = t -> { y } = { t } ) | 
						
							| 28 | 27 | difeq2d |  |-  ( y = t -> ( ( 0 ... N ) \ { y } ) = ( ( 0 ... N ) \ { t } ) ) | 
						
							| 29 | 28 | rexeqdv |  |-  ( y = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 30 | 29 | ralbidv |  |-  ( y = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 31 | 30 | elrab |  |-  ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } <-> ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 32 | 6 | ralrimiva |  |-  ( ph -> A. j e. ( 0 ... N ) N =/= [_ <. T , U >. / s ]_ C ) | 
						
							| 33 |  | nfcv |  |-  F/_ j N | 
						
							| 34 |  | nfcsb1v |  |-  F/_ j [_ t / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 35 | 33 34 | nfne |  |-  F/ j N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 36 |  | csbeq1a |  |-  ( j = t -> [_ <. T , U >. / s ]_ C = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 37 | 36 | neeq2d |  |-  ( j = t -> ( N =/= [_ <. T , U >. / s ]_ C <-> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 38 | 35 37 | rspc |  |-  ( t e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ <. T , U >. / s ]_ C -> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 39 | 32 38 | mpan9 |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 40 |  | nesym |  |-  ( N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C <-> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) | 
						
							| 41 | 39 40 | sylib |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) | 
						
							| 42 |  | nfv |  |-  F/ j ( ph /\ t e. ( 0 ... N ) ) | 
						
							| 43 | 34 | nfel1 |  |-  F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) | 
						
							| 44 | 42 43 | nfim |  |-  F/ j ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) | 
						
							| 45 |  | eleq1w |  |-  ( j = t -> ( j e. ( 0 ... N ) <-> t e. ( 0 ... N ) ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( j = t -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ t e. ( 0 ... N ) ) ) ) | 
						
							| 47 | 36 | eleq1d |  |-  ( j = t -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) | 
						
							| 48 | 46 47 | imbi12d |  |-  ( j = t -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) <-> ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) ) | 
						
							| 49 |  | ovex |  |-  ( 0 ..^ K ) e. _V | 
						
							| 50 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 51 | 49 50 | elmap |  |-  ( T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> T : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 52 | 4 51 | sylibr |  |-  ( ph -> T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 53 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 54 |  | f1oexrnex |  |-  ( ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( 1 ... N ) e. Fin ) -> U e. _V ) | 
						
							| 55 | 53 54 | mpan2 |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U e. _V ) | 
						
							| 56 |  | f1oeq1 |  |-  ( f = U -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 57 | 56 | elabg |  |-  ( U e. _V -> ( U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 58 | 55 57 | syl |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 59 | 58 | ibir |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 60 | 5 59 | syl |  |-  ( ph -> U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 61 |  | opelxpi |  |-  ( ( T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) /\ U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 62 | 52 60 61 | syl2anc |  |-  ( ph -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 64 |  | nfcv |  |-  F/_ s <. T , U >. | 
						
							| 65 |  | nfv |  |-  F/ s ( ph /\ j e. ( 0 ... N ) ) | 
						
							| 66 |  | nfcsb1v |  |-  F/_ s [_ <. T , U >. / s ]_ C | 
						
							| 67 | 66 | nfel1 |  |-  F/ s [_ <. T , U >. / s ]_ C e. ( 0 ... N ) | 
						
							| 68 | 65 67 | nfim |  |-  F/ s ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) | 
						
							| 69 |  | csbeq1a |  |-  ( s = <. T , U >. -> C = [_ <. T , U >. / s ]_ C ) | 
						
							| 70 | 69 | eleq1d |  |-  ( s = <. T , U >. -> ( C e. ( 0 ... N ) <-> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) | 
						
							| 71 | 70 | imbi2d |  |-  ( s = <. T , U >. -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> C e. ( 0 ... N ) ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) ) | 
						
							| 72 |  | elun |  |-  ( p e. ( { 1 } u. { 0 } ) <-> ( p e. { 1 } \/ p e. { 0 } ) ) | 
						
							| 73 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ K ) -> ( i + 1 ) e. ( 0 ... K ) ) | 
						
							| 74 |  | elsni |  |-  ( p e. { 1 } -> p = 1 ) | 
						
							| 75 | 74 | oveq2d |  |-  ( p e. { 1 } -> ( i + p ) = ( i + 1 ) ) | 
						
							| 76 | 75 | eleq1d |  |-  ( p e. { 1 } -> ( ( i + p ) e. ( 0 ... K ) <-> ( i + 1 ) e. ( 0 ... K ) ) ) | 
						
							| 77 | 73 76 | syl5ibrcom |  |-  ( i e. ( 0 ..^ K ) -> ( p e. { 1 } -> ( i + p ) e. ( 0 ... K ) ) ) | 
						
							| 78 |  | elfzonn0 |  |-  ( i e. ( 0 ..^ K ) -> i e. NN0 ) | 
						
							| 79 | 78 | nn0cnd |  |-  ( i e. ( 0 ..^ K ) -> i e. CC ) | 
						
							| 80 | 79 | addridd |  |-  ( i e. ( 0 ..^ K ) -> ( i + 0 ) = i ) | 
						
							| 81 |  | elfzofz |  |-  ( i e. ( 0 ..^ K ) -> i e. ( 0 ... K ) ) | 
						
							| 82 | 80 81 | eqeltrd |  |-  ( i e. ( 0 ..^ K ) -> ( i + 0 ) e. ( 0 ... K ) ) | 
						
							| 83 |  | elsni |  |-  ( p e. { 0 } -> p = 0 ) | 
						
							| 84 | 83 | oveq2d |  |-  ( p e. { 0 } -> ( i + p ) = ( i + 0 ) ) | 
						
							| 85 | 84 | eleq1d |  |-  ( p e. { 0 } -> ( ( i + p ) e. ( 0 ... K ) <-> ( i + 0 ) e. ( 0 ... K ) ) ) | 
						
							| 86 | 82 85 | syl5ibrcom |  |-  ( i e. ( 0 ..^ K ) -> ( p e. { 0 } -> ( i + p ) e. ( 0 ... K ) ) ) | 
						
							| 87 | 77 86 | jaod |  |-  ( i e. ( 0 ..^ K ) -> ( ( p e. { 1 } \/ p e. { 0 } ) -> ( i + p ) e. ( 0 ... K ) ) ) | 
						
							| 88 | 72 87 | biimtrid |  |-  ( i e. ( 0 ..^ K ) -> ( p e. ( { 1 } u. { 0 } ) -> ( i + p ) e. ( 0 ... K ) ) ) | 
						
							| 89 | 88 | imp |  |-  ( ( i e. ( 0 ..^ K ) /\ p e. ( { 1 } u. { 0 } ) ) -> ( i + p ) e. ( 0 ... K ) ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) /\ ( i e. ( 0 ..^ K ) /\ p e. ( { 1 } u. { 0 } ) ) ) -> ( i + p ) e. ( 0 ... K ) ) | 
						
							| 91 |  | xp1st |  |-  ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 92 |  | elmapi |  |-  ( ( 1st ` s ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 93 | 91 92 | syl |  |-  ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 95 |  | xp2nd |  |-  ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` s ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 96 |  | fvex |  |-  ( 2nd ` s ) e. _V | 
						
							| 97 |  | f1oeq1 |  |-  ( f = ( 2nd ` s ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 98 | 96 97 | elab |  |-  ( ( 2nd ` s ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 99 | 95 98 | sylib |  |-  ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 100 |  | 1ex |  |-  1 e. _V | 
						
							| 101 | 100 | fconst |  |-  ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } | 
						
							| 102 |  | c0ex |  |-  0 e. _V | 
						
							| 103 | 102 | fconst |  |-  ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } | 
						
							| 104 | 101 103 | pm3.2i |  |-  ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) | 
						
							| 105 |  | dff1o3 |  |-  ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` s ) ) ) | 
						
							| 106 |  | imain |  |-  ( Fun `' ( 2nd ` s ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 107 | 105 106 | simplbiim |  |-  ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 108 |  | elfznn0 |  |-  ( j e. ( 0 ... N ) -> j e. NN0 ) | 
						
							| 109 | 108 | nn0red |  |-  ( j e. ( 0 ... N ) -> j e. RR ) | 
						
							| 110 | 109 | ltp1d |  |-  ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) | 
						
							| 111 |  | fzdisj |  |-  ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 112 | 110 111 | syl |  |-  ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) | 
						
							| 113 | 112 | imaeq2d |  |-  ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` s ) " (/) ) ) | 
						
							| 114 |  | ima0 |  |-  ( ( 2nd ` s ) " (/) ) = (/) | 
						
							| 115 | 113 114 | eqtrdi |  |-  ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 116 | 107 115 | sylan9req |  |-  ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = (/) ) | 
						
							| 117 |  | fun |  |-  ( ( ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 118 | 104 116 117 | sylancr |  |-  ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 119 |  | nn0p1nn |  |-  ( j e. NN0 -> ( j + 1 ) e. NN ) | 
						
							| 120 | 108 119 | syl |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) | 
						
							| 121 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 122 | 120 121 | eleqtrdi |  |-  ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 123 |  | elfzuz3 |  |-  ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) | 
						
							| 124 |  | fzsplit2 |  |-  ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) | 
						
							| 125 | 122 123 124 | syl2anc |  |-  ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) | 
						
							| 126 | 125 | imaeq2d |  |-  ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( ( 2nd ` s ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) | 
						
							| 127 |  | imaundi |  |-  ( ( 2nd ` s ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 128 | 126 127 | eqtr2di |  |-  ( j e. ( 0 ... N ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` s ) " ( 1 ... N ) ) ) | 
						
							| 129 |  | f1ofo |  |-  ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 130 |  | foima |  |-  ( ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 131 | 129 130 | syl |  |-  ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 132 | 128 131 | sylan9eqr |  |-  ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 133 | 132 | feq2d |  |-  ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) | 
						
							| 134 | 118 133 | mpbid |  |-  ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 135 | 99 134 | sylan |  |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 136 |  | fzfid |  |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 137 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 138 | 90 94 135 136 136 137 | off |  |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) | 
						
							| 139 |  | ovex |  |-  ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 140 |  | feq1 |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) | 
						
							| 141 | 140 | anbi2d |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) | 
						
							| 142 | 2 | eleq1d |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( B e. ( 0 ... N ) <-> C e. ( 0 ... N ) ) ) | 
						
							| 143 | 141 142 | imbi12d |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) <-> ( ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> C e. ( 0 ... N ) ) ) ) | 
						
							| 144 | 139 143 3 | vtocl |  |-  ( ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> C e. ( 0 ... N ) ) | 
						
							| 145 | 138 144 | sylan2 |  |-  ( ( ph /\ ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) ) -> C e. ( 0 ... N ) ) | 
						
							| 146 | 145 | an12s |  |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( ph /\ j e. ( 0 ... N ) ) ) -> C e. ( 0 ... N ) ) | 
						
							| 147 | 146 | ex |  |-  ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( ph /\ j e. ( 0 ... N ) ) -> C e. ( 0 ... N ) ) ) | 
						
							| 148 | 64 68 71 147 | vtoclgaf |  |-  ( <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) | 
						
							| 149 | 63 148 | mpcom |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) | 
						
							| 150 | 44 48 149 | chvarfv |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) | 
						
							| 151 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 152 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 153 | 151 152 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 154 |  | fzm1 |  |-  ( N e. ( ZZ>= ` 0 ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) | 
						
							| 155 | 153 154 | syl |  |-  ( ph -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) | 
						
							| 156 | 155 | adantr |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) | 
						
							| 157 | 150 156 | mpbid |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) | 
						
							| 158 | 157 | ord |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( -. [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) | 
						
							| 159 | 41 158 | mt3d |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 160 | 159 | adantrr |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 161 |  | fzfi |  |-  ( 0 ... ( N - 1 ) ) e. Fin | 
						
							| 162 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 163 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 164 | 162 163 163 | addsubd |  |-  ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 165 |  | hashfz0 |  |-  ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) | 
						
							| 166 | 151 165 | syl |  |-  ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 168 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 169 |  | hashfz0 |  |-  ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 170 | 1 168 169 | 3syl |  |-  ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 171 | 164 167 170 | 3eqtr4rd |  |-  ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) | 
						
							| 172 |  | hashdifsn |  |-  ( ( ( 0 ... N ) e. Fin /\ t e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { t } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) | 
						
							| 173 | 14 172 | mpan |  |-  ( t e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { t } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) | 
						
							| 174 | 173 | eqcomd |  |-  ( t e. ( 0 ... N ) -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( ( 0 ... N ) \ { t } ) ) ) | 
						
							| 175 | 171 174 | sylan9eq |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) ) | 
						
							| 176 |  | diffi |  |-  ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { t } ) e. Fin ) | 
						
							| 177 | 14 176 | ax-mp |  |-  ( ( 0 ... N ) \ { t } ) e. Fin | 
						
							| 178 |  | hashen |  |-  ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( ( 0 ... N ) \ { t } ) e. Fin ) -> ( ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) ) | 
						
							| 179 | 161 177 178 | mp2an |  |-  ( ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) | 
						
							| 180 | 175 179 | sylib |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) | 
						
							| 181 |  | phpreu |  |-  ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 182 | 161 180 181 | sylancr |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 183 | 182 | biimpd |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 184 | 183 | impr |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 185 |  | nfv |  |-  F/ z i = [_ <. T , U >. / s ]_ C | 
						
							| 186 |  | nfcsb1v |  |-  F/_ j [_ z / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 187 | 186 | nfeq2 |  |-  F/ j i = [_ z / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 188 |  | csbeq1a |  |-  ( j = z -> [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 189 | 188 | eqeq2d |  |-  ( j = z -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 190 | 185 187 189 | cbvreuw |  |-  ( E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 191 |  | eqeq1 |  |-  ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 192 | 191 | reubidv |  |-  ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! z e. ( ( 0 ... N ) \ { t } ) i = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 193 | 190 192 | bitrid |  |-  ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 194 | 193 | rspcv |  |-  ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C -> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 195 | 160 184 194 | sylc |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 196 |  | an32 |  |-  ( ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ z e. ( ( 0 ... N ) \ { t } ) ) <-> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 197 | 196 | biimpi |  |-  ( ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 198 | 197 | adantll |  |-  ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 199 |  | eqeq2 |  |-  ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 200 |  | rexsns |  |-  ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> [. t / j ]. i = [_ <. T , U >. / s ]_ C ) | 
						
							| 201 | 34 | nfeq2 |  |-  F/ j i = [_ t / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 202 | 36 | eqeq2d |  |-  ( j = t -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 203 | 201 202 | sbciegf |  |-  ( t e. _V -> ( [. t / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 204 | 13 203 | ax-mp |  |-  ( [. t / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 205 | 200 204 | bitri |  |-  ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 206 |  | rexsns |  |-  ( E. j e. { z } i = [_ <. T , U >. / s ]_ C <-> [. z / j ]. i = [_ <. T , U >. / s ]_ C ) | 
						
							| 207 |  | vex |  |-  z e. _V | 
						
							| 208 | 187 189 | sbciegf |  |-  ( z e. _V -> ( [. z / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 209 | 207 208 | ax-mp |  |-  ( [. z / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 210 | 206 209 | bitri |  |-  ( E. j e. { z } i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 211 | 199 205 210 | 3bitr4g |  |-  ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> E. j e. { z } i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 212 | 211 | orbi1d |  |-  ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( ( E. j e. { t } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( E. j e. { z } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 213 |  | rexun |  |-  ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> ( E. j e. { t } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 214 |  | rexun |  |-  ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> ( E. j e. { z } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 215 | 212 213 214 | 3bitr4g |  |-  ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 216 | 215 | adantl |  |-  ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 217 |  | eldifsni |  |-  ( z e. ( ( 0 ... N ) \ { t } ) -> z =/= t ) | 
						
							| 218 | 217 | necomd |  |-  ( z e. ( ( 0 ... N ) \ { t } ) -> t =/= z ) | 
						
							| 219 |  | dif32 |  |-  ( ( ( 0 ... N ) \ { t } ) \ { z } ) = ( ( ( 0 ... N ) \ { z } ) \ { t } ) | 
						
							| 220 | 219 | uneq2i |  |-  ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) | 
						
							| 221 |  | snssi |  |-  ( t e. ( ( 0 ... N ) \ { z } ) -> { t } C_ ( ( 0 ... N ) \ { z } ) ) | 
						
							| 222 |  | eldifsn |  |-  ( t e. ( ( 0 ... N ) \ { z } ) <-> ( t e. ( 0 ... N ) /\ t =/= z ) ) | 
						
							| 223 |  | undif |  |-  ( { t } C_ ( ( 0 ... N ) \ { z } ) <-> ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) = ( ( 0 ... N ) \ { z } ) ) | 
						
							| 224 | 221 222 223 | 3imtr3i |  |-  ( ( t e. ( 0 ... N ) /\ t =/= z ) -> ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) = ( ( 0 ... N ) \ { z } ) ) | 
						
							| 225 | 220 224 | eqtrid |  |-  ( ( t e. ( 0 ... N ) /\ t =/= z ) -> ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { z } ) ) | 
						
							| 226 | 218 225 | sylan2 |  |-  ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { z } ) ) | 
						
							| 227 | 226 | rexeqdv |  |-  ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 228 | 227 | adantr |  |-  ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 229 |  | snssi |  |-  ( z e. ( ( 0 ... N ) \ { t } ) -> { z } C_ ( ( 0 ... N ) \ { t } ) ) | 
						
							| 230 |  | undif |  |-  ( { z } C_ ( ( 0 ... N ) \ { t } ) <-> ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { t } ) ) | 
						
							| 231 | 229 230 | sylib |  |-  ( z e. ( ( 0 ... N ) \ { t } ) -> ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { t } ) ) | 
						
							| 232 | 231 | rexeqdv |  |-  ( z e. ( ( 0 ... N ) \ { t } ) -> ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 233 | 232 | ad2antlr |  |-  ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 234 | 216 228 233 | 3bitr3d |  |-  ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 235 | 234 | ralbidv |  |-  ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 236 | 235 | biimpar |  |-  ( ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 237 | 236 | an32s |  |-  ( ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 238 | 198 237 | sylan |  |-  ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 239 |  | simpl |  |-  ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> t e. ( 0 ... N ) ) | 
						
							| 240 | 239 | anim2i |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( ph /\ t e. ( 0 ... N ) ) ) | 
						
							| 241 |  | necom |  |-  ( z =/= t <-> t =/= z ) | 
						
							| 242 | 241 | biimpi |  |-  ( z =/= t -> t =/= z ) | 
						
							| 243 | 242 | adantl |  |-  ( ( z e. ( 0 ... N ) /\ z =/= t ) -> t =/= z ) | 
						
							| 244 | 243 | anim2i |  |-  ( ( t e. ( 0 ... N ) /\ ( z e. ( 0 ... N ) /\ z =/= t ) ) -> ( t e. ( 0 ... N ) /\ t =/= z ) ) | 
						
							| 245 |  | eldifsn |  |-  ( z e. ( ( 0 ... N ) \ { t } ) <-> ( z e. ( 0 ... N ) /\ z =/= t ) ) | 
						
							| 246 | 245 | anbi2i |  |-  ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) <-> ( t e. ( 0 ... N ) /\ ( z e. ( 0 ... N ) /\ z =/= t ) ) ) | 
						
							| 247 | 244 246 222 | 3imtr4i |  |-  ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> t e. ( ( 0 ... N ) \ { z } ) ) | 
						
							| 248 | 247 | adantll |  |-  ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> t e. ( ( 0 ... N ) \ { z } ) ) | 
						
							| 249 | 248 | adantr |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> t e. ( ( 0 ... N ) \ { z } ) ) | 
						
							| 250 | 34 | nfel1 |  |-  F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) | 
						
							| 251 | 42 250 | nfim |  |-  F/ j ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 252 | 36 | eleq1d |  |-  ( j = t -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 253 | 46 252 | imbi12d |  |-  ( j = t -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) <-> ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) ) | 
						
							| 254 | 6 | necomd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C =/= N ) | 
						
							| 255 | 254 | neneqd |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> -. [_ <. T , U >. / s ]_ C = N ) | 
						
							| 256 |  | fzm1 |  |-  ( N e. ( ZZ>= ` 0 ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) | 
						
							| 257 | 153 256 | syl |  |-  ( ph -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) | 
						
							| 258 | 257 | adantr |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) | 
						
							| 259 | 149 258 | mpbid |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) | 
						
							| 260 | 259 | ord |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> ( -. [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> [_ <. T , U >. / s ]_ C = N ) ) | 
						
							| 261 | 255 260 | mt3d |  |-  ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 262 | 251 253 261 | chvarfv |  |-  ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 263 | 262 | ad2antrr |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 264 |  | eldifi |  |-  ( z e. ( ( 0 ... N ) \ { t } ) -> z e. ( 0 ... N ) ) | 
						
							| 265 |  | eleq1w |  |-  ( t = z -> ( t e. ( 0 ... N ) <-> z e. ( 0 ... N ) ) ) | 
						
							| 266 | 265 | anbi2d |  |-  ( t = z -> ( ( ph /\ t e. ( 0 ... N ) ) <-> ( ph /\ z e. ( 0 ... N ) ) ) ) | 
						
							| 267 |  | sneq |  |-  ( t = z -> { t } = { z } ) | 
						
							| 268 | 267 | difeq2d |  |-  ( t = z -> ( ( 0 ... N ) \ { t } ) = ( ( 0 ... N ) \ { z } ) ) | 
						
							| 269 | 268 | breq2d |  |-  ( t = z -> ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) ) | 
						
							| 270 | 266 269 | imbi12d |  |-  ( t = z -> ( ( ( ph /\ t e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) <-> ( ( ph /\ z e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) ) ) | 
						
							| 271 | 270 180 | chvarvv |  |-  ( ( ph /\ z e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) | 
						
							| 272 | 264 271 | sylan2 |  |-  ( ( ph /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) | 
						
							| 273 | 272 | adantlr |  |-  ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) | 
						
							| 274 |  | phpreu |  |-  ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 275 | 161 274 | mpan |  |-  ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 276 | 275 | biimpa |  |-  ( ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 277 | 273 276 | sylan |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 278 |  | eqeq1 |  |-  ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 279 | 278 | adantr |  |-  ( ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C /\ j e. ( ( 0 ... N ) \ { z } ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 280 | 201 279 | reubida |  |-  ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 281 | 280 | rspcv |  |-  ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C -> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 282 | 263 277 281 | sylc |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 283 |  | reurmo |  |-  ( E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 284 | 282 283 | syl |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 285 |  | nfv |  |-  F/ i [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C | 
						
							| 286 | 285 | rmo3 |  |-  ( E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) ) | 
						
							| 287 | 284 286 | sylib |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) ) | 
						
							| 288 |  | equcomi |  |-  ( i = t -> t = i ) | 
						
							| 289 | 288 | csbeq1d |  |-  ( i = t -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 290 |  | sbsbc |  |-  ( [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 291 |  | vex |  |-  i e. _V | 
						
							| 292 |  | sbceqg |  |-  ( i e. _V -> ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 293 | 34 | csbconstgf |  |-  ( i e. _V -> [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 294 | 293 | eqeq1d |  |-  ( i e. _V -> ( [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 295 | 292 294 | bitrd |  |-  ( i e. _V -> ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 296 | 291 295 | ax-mp |  |-  ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 297 | 290 296 | bitri |  |-  ( [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 298 | 289 297 | sylibr |  |-  ( i = t -> [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 299 | 298 | biantrud |  |-  ( i = t -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 300 | 299 | bicomd |  |-  ( i = t -> ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 301 |  | eqeq2 |  |-  ( i = t -> ( j = i <-> j = t ) ) | 
						
							| 302 | 300 301 | imbi12d |  |-  ( i = t -> ( ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) | 
						
							| 303 | 302 | rspcv |  |-  ( t e. ( ( 0 ... N ) \ { z } ) -> ( A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) | 
						
							| 304 | 303 | ralimdv |  |-  ( t e. ( ( 0 ... N ) \ { z } ) -> ( A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) -> A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) | 
						
							| 305 | 249 287 304 | sylc |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) | 
						
							| 306 |  | dif32 |  |-  ( ( ( 0 ... N ) \ { z } ) \ { t } ) = ( ( ( 0 ... N ) \ { t } ) \ { z } ) | 
						
							| 307 | 306 | eleq2i |  |-  ( j e. ( ( ( 0 ... N ) \ { z } ) \ { t } ) <-> j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) | 
						
							| 308 |  | eldifsn |  |-  ( j e. ( ( ( 0 ... N ) \ { z } ) \ { t } ) <-> ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) ) | 
						
							| 309 |  | eldifsn |  |-  ( j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) <-> ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) ) | 
						
							| 310 | 307 308 309 | 3bitr3ri |  |-  ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) <-> ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) ) | 
						
							| 311 | 310 | imbi1i |  |-  ( ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 312 |  | impexp |  |-  ( ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 313 |  | impexp |  |-  ( ( ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 314 | 311 312 313 | 3bitr3ri |  |-  ( ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) <-> ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 315 | 314 | albii |  |-  ( A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) <-> A. j ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 316 |  | con34b |  |-  ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> ( -. j = t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 317 |  | df-ne |  |-  ( j =/= t <-> -. j = t ) | 
						
							| 318 | 317 | imbi1i |  |-  ( ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( -. j = t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 319 | 316 318 | bitr4i |  |-  ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 320 | 319 | ralbii |  |-  ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j e. ( ( 0 ... N ) \ { z } ) ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 321 |  | df-ral |  |-  ( A. j e. ( ( 0 ... N ) \ { z } ) ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 322 | 320 321 | bitri |  |-  ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 323 |  | df-ral |  |-  ( A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> A. j ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 324 | 315 322 323 | 3bitr4i |  |-  ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 325 | 305 324 | sylib |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 326 |  | df-ne |  |-  ( j =/= z <-> -. j = z ) | 
						
							| 327 | 326 | imbi1i |  |-  ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( -. j = z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 328 |  | con34b |  |-  ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) <-> ( -. j = z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 329 | 327 328 | bitr4i |  |-  ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) ) | 
						
							| 330 |  | ancr |  |-  ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 331 | 329 330 | sylbi |  |-  ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 332 | 331 | ralimi |  |-  ( A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 333 | 325 332 | syl |  |-  ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 334 | 240 333 | sylanl1 |  |-  ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 335 | 201 278 | rexbid |  |-  ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 336 | 335 | rspcva |  |-  ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 337 | 262 336 | sylan |  |-  ( ( ( ph /\ t e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 338 | 337 | anasss |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 339 | 338 | ad2antrr |  |-  ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) | 
						
							| 340 |  | rexim |  |-  ( A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) -> ( E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) | 
						
							| 341 | 334 339 340 | sylc |  |-  ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 342 |  | rexex |  |-  ( E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 343 | 341 342 | syl |  |-  ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 344 | 34 186 | nfeq |  |-  F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C | 
						
							| 345 | 188 | eqeq2d |  |-  ( j = z -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) | 
						
							| 346 | 344 345 | equsexv |  |-  ( E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 347 | 343 346 | sylib |  |-  ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) | 
						
							| 348 | 238 347 | impbida |  |-  ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 349 | 348 | reubidva |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 350 | 195 349 | mpbid |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) | 
						
							| 351 |  | an32 |  |-  ( ( ( z e. ( 0 ... N ) /\ z =/= t ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) /\ z =/= t ) ) | 
						
							| 352 | 245 | anbi1i |  |-  ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( ( z e. ( 0 ... N ) /\ z =/= t ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 353 |  | sneq |  |-  ( y = z -> { y } = { z } ) | 
						
							| 354 | 353 | difeq2d |  |-  ( y = z -> ( ( 0 ... N ) \ { y } ) = ( ( 0 ... N ) \ { z } ) ) | 
						
							| 355 | 354 | rexeqdv |  |-  ( y = z -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 356 | 355 | ralbidv |  |-  ( y = z -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 357 | 356 | elrab |  |-  ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } <-> ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 358 | 357 | anbi1i |  |-  ( ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) <-> ( ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) /\ z =/= t ) ) | 
						
							| 359 | 351 352 358 | 3bitr4i |  |-  ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) ) | 
						
							| 360 |  | eldifsn |  |-  ( z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) <-> ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) ) | 
						
							| 361 | 359 360 | bitr4i |  |-  ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) | 
						
							| 362 | 361 | eubii |  |-  ( E! z ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) | 
						
							| 363 |  | df-reu |  |-  ( E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E! z ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) | 
						
							| 364 |  | euhash1 |  |-  ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) ) | 
						
							| 365 | 18 364 | ax-mp |  |-  ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) | 
						
							| 366 | 362 363 365 | 3bitr4i |  |-  ( E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) | 
						
							| 367 | 350 366 | sylib |  |-  ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) | 
						
							| 368 | 31 367 | sylan2b |  |-  ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) | 
						
							| 369 | 368 | oveq1d |  |-  ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( 1 + 1 ) ) | 
						
							| 370 | 26 369 | eqtr3d |  |-  ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) = ( 1 + 1 ) ) | 
						
							| 371 | 12 370 | breqtrrid |  |-  ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) | 
						
							| 372 | 371 | ex |  |-  ( ph -> ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) | 
						
							| 373 | 372 | exlimdv |  |-  ( ph -> ( E. t t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) | 
						
							| 374 | 7 373 | biimtrid |  |-  ( ph -> ( -. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) | 
						
							| 375 |  | dvds0 |  |-  ( 2 e. ZZ -> 2 || 0 ) | 
						
							| 376 | 8 375 | ax-mp |  |-  2 || 0 | 
						
							| 377 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 378 | 376 377 | breqtrri |  |-  2 || ( # ` (/) ) | 
						
							| 379 |  | fveq2 |  |-  ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) = ( # ` (/) ) ) | 
						
							| 380 | 378 379 | breqtrrid |  |-  ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) | 
						
							| 381 | 374 380 | pm2.61d2 |  |-  ( ph -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |