| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
| 3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 4 |
|
poimirlem25.3 |
|- ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 5 |
|
poimirlem25.4 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 6 |
|
poimirlem25.5 |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> N =/= [_ <. T , U >. / s ]_ C ) |
| 7 |
|
neq0 |
|- ( -. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) <-> E. t t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) |
| 8 |
|
2z |
|- 2 e. ZZ |
| 9 |
|
iddvds |
|- ( 2 e. ZZ -> 2 || 2 ) |
| 10 |
8 9
|
ax-mp |
|- 2 || 2 |
| 11 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 12 |
10 11
|
breqtri |
|- 2 || ( 1 + 1 ) |
| 13 |
|
vex |
|- t e. _V |
| 14 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
| 15 |
|
rabfi |
|- ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin ) |
| 16 |
14 15
|
ax-mp |
|- { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin |
| 17 |
|
diffi |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin -> ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin ) |
| 18 |
16 17
|
ax-mp |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin |
| 19 |
|
neldifsn |
|- -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) |
| 20 |
18 19
|
pm3.2i |
|- ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin /\ -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
| 21 |
|
hashunsng |
|- ( t e. _V -> ( ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin /\ -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) -> ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) ) ) |
| 22 |
13 20 21
|
mp2 |
|- ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) |
| 23 |
|
difsnid |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) = { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) |
| 24 |
23
|
fveq2d |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
| 25 |
22 24
|
eqtr3id |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
| 27 |
|
sneq |
|- ( y = t -> { y } = { t } ) |
| 28 |
27
|
difeq2d |
|- ( y = t -> ( ( 0 ... N ) \ { y } ) = ( ( 0 ... N ) \ { t } ) ) |
| 29 |
28
|
rexeqdv |
|- ( y = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 30 |
29
|
ralbidv |
|- ( y = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 31 |
30
|
elrab |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } <-> ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 32 |
6
|
ralrimiva |
|- ( ph -> A. j e. ( 0 ... N ) N =/= [_ <. T , U >. / s ]_ C ) |
| 33 |
|
nfcv |
|- F/_ j N |
| 34 |
|
nfcsb1v |
|- F/_ j [_ t / j ]_ [_ <. T , U >. / s ]_ C |
| 35 |
33 34
|
nfne |
|- F/ j N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C |
| 36 |
|
csbeq1a |
|- ( j = t -> [_ <. T , U >. / s ]_ C = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
| 37 |
36
|
neeq2d |
|- ( j = t -> ( N =/= [_ <. T , U >. / s ]_ C <-> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 38 |
35 37
|
rspc |
|- ( t e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ <. T , U >. / s ]_ C -> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 39 |
32 38
|
mpan9 |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
| 40 |
|
nesym |
|- ( N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C <-> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) |
| 41 |
39 40
|
sylib |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) |
| 42 |
|
nfv |
|- F/ j ( ph /\ t e. ( 0 ... N ) ) |
| 43 |
34
|
nfel1 |
|- F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) |
| 44 |
42 43
|
nfim |
|- F/ j ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
| 45 |
|
eleq1w |
|- ( j = t -> ( j e. ( 0 ... N ) <-> t e. ( 0 ... N ) ) ) |
| 46 |
45
|
anbi2d |
|- ( j = t -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ t e. ( 0 ... N ) ) ) ) |
| 47 |
36
|
eleq1d |
|- ( j = t -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) |
| 48 |
46 47
|
imbi12d |
|- ( j = t -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) <-> ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) ) |
| 49 |
|
ovex |
|- ( 0 ..^ K ) e. _V |
| 50 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 51 |
49 50
|
elmap |
|- ( T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 52 |
4 51
|
sylibr |
|- ( ph -> T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 53 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 54 |
|
f1oexrnex |
|- ( ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( 1 ... N ) e. Fin ) -> U e. _V ) |
| 55 |
53 54
|
mpan2 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U e. _V ) |
| 56 |
|
f1oeq1 |
|- ( f = U -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 57 |
56
|
elabg |
|- ( U e. _V -> ( U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 58 |
55 57
|
syl |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 59 |
58
|
ibir |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 60 |
5 59
|
syl |
|- ( ph -> U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 61 |
|
opelxpi |
|- ( ( T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) /\ U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 62 |
52 60 61
|
syl2anc |
|- ( ph -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 64 |
|
nfcv |
|- F/_ s <. T , U >. |
| 65 |
|
nfv |
|- F/ s ( ph /\ j e. ( 0 ... N ) ) |
| 66 |
|
nfcsb1v |
|- F/_ s [_ <. T , U >. / s ]_ C |
| 67 |
66
|
nfel1 |
|- F/ s [_ <. T , U >. / s ]_ C e. ( 0 ... N ) |
| 68 |
65 67
|
nfim |
|- F/ s ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
| 69 |
|
csbeq1a |
|- ( s = <. T , U >. -> C = [_ <. T , U >. / s ]_ C ) |
| 70 |
69
|
eleq1d |
|- ( s = <. T , U >. -> ( C e. ( 0 ... N ) <-> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) |
| 71 |
70
|
imbi2d |
|- ( s = <. T , U >. -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> C e. ( 0 ... N ) ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) ) |
| 72 |
|
elun |
|- ( p e. ( { 1 } u. { 0 } ) <-> ( p e. { 1 } \/ p e. { 0 } ) ) |
| 73 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ K ) -> ( i + 1 ) e. ( 0 ... K ) ) |
| 74 |
|
elsni |
|- ( p e. { 1 } -> p = 1 ) |
| 75 |
74
|
oveq2d |
|- ( p e. { 1 } -> ( i + p ) = ( i + 1 ) ) |
| 76 |
75
|
eleq1d |
|- ( p e. { 1 } -> ( ( i + p ) e. ( 0 ... K ) <-> ( i + 1 ) e. ( 0 ... K ) ) ) |
| 77 |
73 76
|
syl5ibrcom |
|- ( i e. ( 0 ..^ K ) -> ( p e. { 1 } -> ( i + p ) e. ( 0 ... K ) ) ) |
| 78 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ K ) -> i e. NN0 ) |
| 79 |
78
|
nn0cnd |
|- ( i e. ( 0 ..^ K ) -> i e. CC ) |
| 80 |
79
|
addridd |
|- ( i e. ( 0 ..^ K ) -> ( i + 0 ) = i ) |
| 81 |
|
elfzofz |
|- ( i e. ( 0 ..^ K ) -> i e. ( 0 ... K ) ) |
| 82 |
80 81
|
eqeltrd |
|- ( i e. ( 0 ..^ K ) -> ( i + 0 ) e. ( 0 ... K ) ) |
| 83 |
|
elsni |
|- ( p e. { 0 } -> p = 0 ) |
| 84 |
83
|
oveq2d |
|- ( p e. { 0 } -> ( i + p ) = ( i + 0 ) ) |
| 85 |
84
|
eleq1d |
|- ( p e. { 0 } -> ( ( i + p ) e. ( 0 ... K ) <-> ( i + 0 ) e. ( 0 ... K ) ) ) |
| 86 |
82 85
|
syl5ibrcom |
|- ( i e. ( 0 ..^ K ) -> ( p e. { 0 } -> ( i + p ) e. ( 0 ... K ) ) ) |
| 87 |
77 86
|
jaod |
|- ( i e. ( 0 ..^ K ) -> ( ( p e. { 1 } \/ p e. { 0 } ) -> ( i + p ) e. ( 0 ... K ) ) ) |
| 88 |
72 87
|
biimtrid |
|- ( i e. ( 0 ..^ K ) -> ( p e. ( { 1 } u. { 0 } ) -> ( i + p ) e. ( 0 ... K ) ) ) |
| 89 |
88
|
imp |
|- ( ( i e. ( 0 ..^ K ) /\ p e. ( { 1 } u. { 0 } ) ) -> ( i + p ) e. ( 0 ... K ) ) |
| 90 |
89
|
adantl |
|- ( ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) /\ ( i e. ( 0 ..^ K ) /\ p e. ( { 1 } u. { 0 } ) ) ) -> ( i + p ) e. ( 0 ... K ) ) |
| 91 |
|
xp1st |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 92 |
|
elmapi |
|- ( ( 1st ` s ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 93 |
91 92
|
syl |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 94 |
93
|
adantr |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 95 |
|
xp2nd |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` s ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 96 |
|
fvex |
|- ( 2nd ` s ) e. _V |
| 97 |
|
f1oeq1 |
|- ( f = ( 2nd ` s ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 98 |
96 97
|
elab |
|- ( ( 2nd ` s ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 99 |
95 98
|
sylib |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 100 |
|
1ex |
|- 1 e. _V |
| 101 |
100
|
fconst |
|- ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } |
| 102 |
|
c0ex |
|- 0 e. _V |
| 103 |
102
|
fconst |
|- ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } |
| 104 |
101 103
|
pm3.2i |
|- ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
| 105 |
|
dff1o3 |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` s ) ) ) |
| 106 |
|
imain |
|- ( Fun `' ( 2nd ` s ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) ) |
| 107 |
105 106
|
simplbiim |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) ) |
| 108 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
| 109 |
108
|
nn0red |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
| 110 |
109
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
| 111 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 112 |
110 111
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
| 113 |
112
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` s ) " (/) ) ) |
| 114 |
|
ima0 |
|- ( ( 2nd ` s ) " (/) ) = (/) |
| 115 |
113 114
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 116 |
107 115
|
sylan9req |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = (/) ) |
| 117 |
|
fun |
|- ( ( ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 118 |
104 116 117
|
sylancr |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
| 119 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 120 |
108 119
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
| 121 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 122 |
120 121
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 123 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
| 124 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 125 |
122 123 124
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
| 126 |
125
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( ( 2nd ` s ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
| 127 |
|
imaundi |
|- ( ( 2nd ` s ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) |
| 128 |
126 127
|
eqtr2di |
|- ( j e. ( 0 ... N ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` s ) " ( 1 ... N ) ) ) |
| 129 |
|
f1ofo |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 130 |
|
foima |
|- ( ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 131 |
129 130
|
syl |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 132 |
128 131
|
sylan9eqr |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 133 |
132
|
feq2d |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
| 134 |
118 133
|
mpbid |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
| 135 |
99 134
|
sylan |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
| 136 |
|
fzfid |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. Fin ) |
| 137 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 138 |
90 94 135 136 136 137
|
off |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
| 139 |
|
ovex |
|- ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 140 |
|
feq1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
| 141 |
140
|
anbi2d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) |
| 142 |
2
|
eleq1d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( B e. ( 0 ... N ) <-> C e. ( 0 ... N ) ) ) |
| 143 |
141 142
|
imbi12d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) <-> ( ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> C e. ( 0 ... N ) ) ) ) |
| 144 |
139 143 3
|
vtocl |
|- ( ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> C e. ( 0 ... N ) ) |
| 145 |
138 144
|
sylan2 |
|- ( ( ph /\ ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) ) -> C e. ( 0 ... N ) ) |
| 146 |
145
|
an12s |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( ph /\ j e. ( 0 ... N ) ) ) -> C e. ( 0 ... N ) ) |
| 147 |
146
|
ex |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( ph /\ j e. ( 0 ... N ) ) -> C e. ( 0 ... N ) ) ) |
| 148 |
64 68 71 147
|
vtoclgaf |
|- ( <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) |
| 149 |
63 148
|
mpcom |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
| 150 |
44 48 149
|
chvarfv |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
| 151 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 152 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 153 |
151 152
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 154 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) |
| 155 |
153 154
|
syl |
|- ( ph -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) |
| 156 |
155
|
adantr |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) |
| 157 |
150 156
|
mpbid |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) |
| 158 |
157
|
ord |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( -. [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) |
| 159 |
41 158
|
mt3d |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 160 |
159
|
adantrr |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 161 |
|
fzfi |
|- ( 0 ... ( N - 1 ) ) e. Fin |
| 162 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 163 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 164 |
162 163 163
|
addsubd |
|- ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) |
| 165 |
|
hashfz0 |
|- ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
| 166 |
151 165
|
syl |
|- ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
| 167 |
166
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 168 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 169 |
|
hashfz0 |
|- ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
| 170 |
1 168 169
|
3syl |
|- ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
| 171 |
164 167 170
|
3eqtr4rd |
|- ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
| 172 |
|
hashdifsn |
|- ( ( ( 0 ... N ) e. Fin /\ t e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { t } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
| 173 |
14 172
|
mpan |
|- ( t e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { t } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
| 174 |
173
|
eqcomd |
|- ( t e. ( 0 ... N ) -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( ( 0 ... N ) \ { t } ) ) ) |
| 175 |
171 174
|
sylan9eq |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) ) |
| 176 |
|
diffi |
|- ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { t } ) e. Fin ) |
| 177 |
14 176
|
ax-mp |
|- ( ( 0 ... N ) \ { t } ) e. Fin |
| 178 |
|
hashen |
|- ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( ( 0 ... N ) \ { t } ) e. Fin ) -> ( ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) ) |
| 179 |
161 177 178
|
mp2an |
|- ( ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) |
| 180 |
175 179
|
sylib |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) |
| 181 |
|
phpreu |
|- ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 182 |
161 180 181
|
sylancr |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 183 |
182
|
biimpd |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 184 |
183
|
impr |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) |
| 185 |
|
nfv |
|- F/ z i = [_ <. T , U >. / s ]_ C |
| 186 |
|
nfcsb1v |
|- F/_ j [_ z / j ]_ [_ <. T , U >. / s ]_ C |
| 187 |
186
|
nfeq2 |
|- F/ j i = [_ z / j ]_ [_ <. T , U >. / s ]_ C |
| 188 |
|
csbeq1a |
|- ( j = z -> [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 189 |
188
|
eqeq2d |
|- ( j = z -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 190 |
185 187 189
|
cbvreuw |
|- ( E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 191 |
|
eqeq1 |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 192 |
191
|
reubidv |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! z e. ( ( 0 ... N ) \ { t } ) i = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 193 |
190 192
|
bitrid |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 194 |
193
|
rspcv |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C -> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 195 |
160 184 194
|
sylc |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 196 |
|
an32 |
|- ( ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ z e. ( ( 0 ... N ) \ { t } ) ) <-> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 197 |
196
|
biimpi |
|- ( ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 198 |
197
|
adantll |
|- ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 199 |
|
eqeq2 |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 200 |
|
rexsns |
|- ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> [. t / j ]. i = [_ <. T , U >. / s ]_ C ) |
| 201 |
34
|
nfeq2 |
|- F/ j i = [_ t / j ]_ [_ <. T , U >. / s ]_ C |
| 202 |
36
|
eqeq2d |
|- ( j = t -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 203 |
201 202
|
sbciegf |
|- ( t e. _V -> ( [. t / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 204 |
13 203
|
ax-mp |
|- ( [. t / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
| 205 |
200 204
|
bitri |
|- ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
| 206 |
|
rexsns |
|- ( E. j e. { z } i = [_ <. T , U >. / s ]_ C <-> [. z / j ]. i = [_ <. T , U >. / s ]_ C ) |
| 207 |
|
vex |
|- z e. _V |
| 208 |
187 189
|
sbciegf |
|- ( z e. _V -> ( [. z / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 209 |
207 208
|
ax-mp |
|- ( [. z / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 210 |
206 209
|
bitri |
|- ( E. j e. { z } i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 211 |
199 205 210
|
3bitr4g |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> E. j e. { z } i = [_ <. T , U >. / s ]_ C ) ) |
| 212 |
211
|
orbi1d |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( ( E. j e. { t } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( E. j e. { z } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) ) |
| 213 |
|
rexun |
|- ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> ( E. j e. { t } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 214 |
|
rexun |
|- ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> ( E. j e. { z } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 215 |
212 213 214
|
3bitr4g |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C ) ) |
| 216 |
215
|
adantl |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C ) ) |
| 217 |
|
eldifsni |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> z =/= t ) |
| 218 |
217
|
necomd |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> t =/= z ) |
| 219 |
|
dif32 |
|- ( ( ( 0 ... N ) \ { t } ) \ { z } ) = ( ( ( 0 ... N ) \ { z } ) \ { t } ) |
| 220 |
219
|
uneq2i |
|- ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) |
| 221 |
|
snssi |
|- ( t e. ( ( 0 ... N ) \ { z } ) -> { t } C_ ( ( 0 ... N ) \ { z } ) ) |
| 222 |
|
eldifsn |
|- ( t e. ( ( 0 ... N ) \ { z } ) <-> ( t e. ( 0 ... N ) /\ t =/= z ) ) |
| 223 |
|
undif |
|- ( { t } C_ ( ( 0 ... N ) \ { z } ) <-> ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) = ( ( 0 ... N ) \ { z } ) ) |
| 224 |
221 222 223
|
3imtr3i |
|- ( ( t e. ( 0 ... N ) /\ t =/= z ) -> ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) = ( ( 0 ... N ) \ { z } ) ) |
| 225 |
220 224
|
eqtrid |
|- ( ( t e. ( 0 ... N ) /\ t =/= z ) -> ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { z } ) ) |
| 226 |
218 225
|
sylan2 |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { z } ) ) |
| 227 |
226
|
rexeqdv |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 228 |
227
|
adantr |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 229 |
|
snssi |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> { z } C_ ( ( 0 ... N ) \ { t } ) ) |
| 230 |
|
undif |
|- ( { z } C_ ( ( 0 ... N ) \ { t } ) <-> ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { t } ) ) |
| 231 |
229 230
|
sylib |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { t } ) ) |
| 232 |
231
|
rexeqdv |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 233 |
232
|
ad2antlr |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 234 |
216 228 233
|
3bitr3d |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 235 |
234
|
ralbidv |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 236 |
235
|
biimpar |
|- ( ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
| 237 |
236
|
an32s |
|- ( ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
| 238 |
198 237
|
sylan |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
| 239 |
|
simpl |
|- ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> t e. ( 0 ... N ) ) |
| 240 |
239
|
anim2i |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( ph /\ t e. ( 0 ... N ) ) ) |
| 241 |
|
necom |
|- ( z =/= t <-> t =/= z ) |
| 242 |
241
|
biimpi |
|- ( z =/= t -> t =/= z ) |
| 243 |
242
|
adantl |
|- ( ( z e. ( 0 ... N ) /\ z =/= t ) -> t =/= z ) |
| 244 |
243
|
anim2i |
|- ( ( t e. ( 0 ... N ) /\ ( z e. ( 0 ... N ) /\ z =/= t ) ) -> ( t e. ( 0 ... N ) /\ t =/= z ) ) |
| 245 |
|
eldifsn |
|- ( z e. ( ( 0 ... N ) \ { t } ) <-> ( z e. ( 0 ... N ) /\ z =/= t ) ) |
| 246 |
245
|
anbi2i |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) <-> ( t e. ( 0 ... N ) /\ ( z e. ( 0 ... N ) /\ z =/= t ) ) ) |
| 247 |
244 246 222
|
3imtr4i |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> t e. ( ( 0 ... N ) \ { z } ) ) |
| 248 |
247
|
adantll |
|- ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> t e. ( ( 0 ... N ) \ { z } ) ) |
| 249 |
248
|
adantr |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> t e. ( ( 0 ... N ) \ { z } ) ) |
| 250 |
34
|
nfel1 |
|- F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) |
| 251 |
42 250
|
nfim |
|- F/ j ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 252 |
36
|
eleq1d |
|- ( j = t -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 253 |
46 252
|
imbi12d |
|- ( j = t -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) <-> ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) ) |
| 254 |
6
|
necomd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C =/= N ) |
| 255 |
254
|
neneqd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> -. [_ <. T , U >. / s ]_ C = N ) |
| 256 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) |
| 257 |
153 256
|
syl |
|- ( ph -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) |
| 258 |
257
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) |
| 259 |
149 258
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) |
| 260 |
259
|
ord |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( -. [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> [_ <. T , U >. / s ]_ C = N ) ) |
| 261 |
255 260
|
mt3d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 262 |
251 253 261
|
chvarfv |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 263 |
262
|
ad2antrr |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 264 |
|
eldifi |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> z e. ( 0 ... N ) ) |
| 265 |
|
eleq1w |
|- ( t = z -> ( t e. ( 0 ... N ) <-> z e. ( 0 ... N ) ) ) |
| 266 |
265
|
anbi2d |
|- ( t = z -> ( ( ph /\ t e. ( 0 ... N ) ) <-> ( ph /\ z e. ( 0 ... N ) ) ) ) |
| 267 |
|
sneq |
|- ( t = z -> { t } = { z } ) |
| 268 |
267
|
difeq2d |
|- ( t = z -> ( ( 0 ... N ) \ { t } ) = ( ( 0 ... N ) \ { z } ) ) |
| 269 |
268
|
breq2d |
|- ( t = z -> ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) ) |
| 270 |
266 269
|
imbi12d |
|- ( t = z -> ( ( ( ph /\ t e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) <-> ( ( ph /\ z e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) ) ) |
| 271 |
270 180
|
chvarvv |
|- ( ( ph /\ z e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) |
| 272 |
264 271
|
sylan2 |
|- ( ( ph /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) |
| 273 |
272
|
adantlr |
|- ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) |
| 274 |
|
phpreu |
|- ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 275 |
161 274
|
mpan |
|- ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 276 |
275
|
biimpa |
|- ( ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
| 277 |
273 276
|
sylan |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
| 278 |
|
eqeq1 |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 279 |
278
|
adantr |
|- ( ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C /\ j e. ( ( 0 ... N ) \ { z } ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 280 |
201 279
|
reubida |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 281 |
280
|
rspcv |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C -> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 282 |
263 277 281
|
sylc |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 283 |
|
reurmo |
|- ( E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 284 |
282 283
|
syl |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 285 |
|
nfv |
|- F/ i [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C |
| 286 |
285
|
rmo3 |
|- ( E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) ) |
| 287 |
284 286
|
sylib |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) ) |
| 288 |
|
equcomi |
|- ( i = t -> t = i ) |
| 289 |
288
|
csbeq1d |
|- ( i = t -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) |
| 290 |
|
sbsbc |
|- ( [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 291 |
|
vex |
|- i e. _V |
| 292 |
|
sbceqg |
|- ( i e. _V -> ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 293 |
34
|
csbconstgf |
|- ( i e. _V -> [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
| 294 |
293
|
eqeq1d |
|- ( i e. _V -> ( [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 295 |
292 294
|
bitrd |
|- ( i e. _V -> ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 296 |
291 295
|
ax-mp |
|- ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) |
| 297 |
290 296
|
bitri |
|- ( [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) |
| 298 |
289 297
|
sylibr |
|- ( i = t -> [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 299 |
298
|
biantrud |
|- ( i = t -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 300 |
299
|
bicomd |
|- ( i = t -> ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 301 |
|
eqeq2 |
|- ( i = t -> ( j = i <-> j = t ) ) |
| 302 |
300 301
|
imbi12d |
|- ( i = t -> ( ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) |
| 303 |
302
|
rspcv |
|- ( t e. ( ( 0 ... N ) \ { z } ) -> ( A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) |
| 304 |
303
|
ralimdv |
|- ( t e. ( ( 0 ... N ) \ { z } ) -> ( A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) -> A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) |
| 305 |
249 287 304
|
sylc |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) |
| 306 |
|
dif32 |
|- ( ( ( 0 ... N ) \ { z } ) \ { t } ) = ( ( ( 0 ... N ) \ { t } ) \ { z } ) |
| 307 |
306
|
eleq2i |
|- ( j e. ( ( ( 0 ... N ) \ { z } ) \ { t } ) <-> j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) |
| 308 |
|
eldifsn |
|- ( j e. ( ( ( 0 ... N ) \ { z } ) \ { t } ) <-> ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) ) |
| 309 |
|
eldifsn |
|- ( j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) <-> ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) ) |
| 310 |
307 308 309
|
3bitr3ri |
|- ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) <-> ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) ) |
| 311 |
310
|
imbi1i |
|- ( ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 312 |
|
impexp |
|- ( ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 313 |
|
impexp |
|- ( ( ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 314 |
311 312 313
|
3bitr3ri |
|- ( ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) <-> ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 315 |
314
|
albii |
|- ( A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) <-> A. j ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 316 |
|
con34b |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> ( -. j = t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 317 |
|
df-ne |
|- ( j =/= t <-> -. j = t ) |
| 318 |
317
|
imbi1i |
|- ( ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( -. j = t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 319 |
316 318
|
bitr4i |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 320 |
319
|
ralbii |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j e. ( ( 0 ... N ) \ { z } ) ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 321 |
|
df-ral |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 322 |
320 321
|
bitri |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 323 |
|
df-ral |
|- ( A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> A. j ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 324 |
315 322 323
|
3bitr4i |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 325 |
305 324
|
sylib |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 326 |
|
df-ne |
|- ( j =/= z <-> -. j = z ) |
| 327 |
326
|
imbi1i |
|- ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( -. j = z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 328 |
|
con34b |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) <-> ( -. j = z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 329 |
327 328
|
bitr4i |
|- ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) ) |
| 330 |
|
ancr |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 331 |
329 330
|
sylbi |
|- ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 332 |
331
|
ralimi |
|- ( A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 333 |
325 332
|
syl |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 334 |
240 333
|
sylanl1 |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 335 |
201 278
|
rexbid |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 336 |
335
|
rspcva |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 337 |
262 336
|
sylan |
|- ( ( ( ph /\ t e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 338 |
337
|
anasss |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 339 |
338
|
ad2antrr |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
| 340 |
|
rexim |
|- ( A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) -> ( E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
| 341 |
334 339 340
|
sylc |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 342 |
|
rexex |
|- ( E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 343 |
341 342
|
syl |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
| 344 |
34 186
|
nfeq |
|- F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C |
| 345 |
188
|
eqeq2d |
|- ( j = z -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
| 346 |
344 345
|
equsexv |
|- ( E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 347 |
343 346
|
sylib |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
| 348 |
238 347
|
impbida |
|- ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 349 |
348
|
reubidva |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 350 |
195 349
|
mpbid |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
| 351 |
|
an32 |
|- ( ( ( z e. ( 0 ... N ) /\ z =/= t ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) /\ z =/= t ) ) |
| 352 |
245
|
anbi1i |
|- ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( ( z e. ( 0 ... N ) /\ z =/= t ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 353 |
|
sneq |
|- ( y = z -> { y } = { z } ) |
| 354 |
353
|
difeq2d |
|- ( y = z -> ( ( 0 ... N ) \ { y } ) = ( ( 0 ... N ) \ { z } ) ) |
| 355 |
354
|
rexeqdv |
|- ( y = z -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 356 |
355
|
ralbidv |
|- ( y = z -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 357 |
356
|
elrab |
|- ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } <-> ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 358 |
357
|
anbi1i |
|- ( ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) <-> ( ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) /\ z =/= t ) ) |
| 359 |
351 352 358
|
3bitr4i |
|- ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) ) |
| 360 |
|
eldifsn |
|- ( z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) <-> ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) ) |
| 361 |
359 360
|
bitr4i |
|- ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
| 362 |
361
|
eubii |
|- ( E! z ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
| 363 |
|
df-reu |
|- ( E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E! z ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
| 364 |
|
euhash1 |
|- ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) ) |
| 365 |
18 364
|
ax-mp |
|- ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
| 366 |
362 363 365
|
3bitr4i |
|- ( E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) |
| 367 |
350 366
|
sylib |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) |
| 368 |
31 367
|
sylan2b |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) |
| 369 |
368
|
oveq1d |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( 1 + 1 ) ) |
| 370 |
26 369
|
eqtr3d |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) = ( 1 + 1 ) ) |
| 371 |
12 370
|
breqtrrid |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
| 372 |
371
|
ex |
|- ( ph -> ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) |
| 373 |
372
|
exlimdv |
|- ( ph -> ( E. t t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) |
| 374 |
7 373
|
biimtrid |
|- ( ph -> ( -. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) |
| 375 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
| 376 |
8 375
|
ax-mp |
|- 2 || 0 |
| 377 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 378 |
376 377
|
breqtrri |
|- 2 || ( # ` (/) ) |
| 379 |
|
fveq2 |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) = ( # ` (/) ) ) |
| 380 |
378 379
|
breqtrrid |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
| 381 |
374 380
|
pm2.61d2 |
|- ( ph -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |