Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
4 |
|
poimirlem25.3 |
|- ( ph -> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
5 |
|
poimirlem25.4 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
6 |
|
poimirlem25.5 |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> N =/= [_ <. T , U >. / s ]_ C ) |
7 |
|
neq0 |
|- ( -. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) <-> E. t t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) |
8 |
|
2z |
|- 2 e. ZZ |
9 |
|
iddvds |
|- ( 2 e. ZZ -> 2 || 2 ) |
10 |
8 9
|
ax-mp |
|- 2 || 2 |
11 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
12 |
10 11
|
breqtri |
|- 2 || ( 1 + 1 ) |
13 |
|
vex |
|- t e. _V |
14 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
15 |
|
rabfi |
|- ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin ) |
16 |
14 15
|
ax-mp |
|- { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin |
17 |
|
diffi |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } e. Fin -> ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin ) |
18 |
16 17
|
ax-mp |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin |
19 |
|
neldifsn |
|- -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) |
20 |
18 19
|
pm3.2i |
|- ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin /\ -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
21 |
|
hashunsng |
|- ( t e. _V -> ( ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin /\ -. t e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) -> ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) ) ) |
22 |
13 20 21
|
mp2 |
|- ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) |
23 |
|
difsnid |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) = { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) |
24 |
23
|
fveq2d |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( # ` ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) u. { t } ) ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
25 |
22 24
|
eqtr3id |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
27 |
|
sneq |
|- ( y = t -> { y } = { t } ) |
28 |
27
|
difeq2d |
|- ( y = t -> ( ( 0 ... N ) \ { y } ) = ( ( 0 ... N ) \ { t } ) ) |
29 |
28
|
rexeqdv |
|- ( y = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
30 |
29
|
ralbidv |
|- ( y = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
31 |
30
|
elrab |
|- ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } <-> ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
32 |
6
|
ralrimiva |
|- ( ph -> A. j e. ( 0 ... N ) N =/= [_ <. T , U >. / s ]_ C ) |
33 |
|
nfcv |
|- F/_ j N |
34 |
|
nfcsb1v |
|- F/_ j [_ t / j ]_ [_ <. T , U >. / s ]_ C |
35 |
33 34
|
nfne |
|- F/ j N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C |
36 |
|
csbeq1a |
|- ( j = t -> [_ <. T , U >. / s ]_ C = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
37 |
36
|
neeq2d |
|- ( j = t -> ( N =/= [_ <. T , U >. / s ]_ C <-> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
38 |
35 37
|
rspc |
|- ( t e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ <. T , U >. / s ]_ C -> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
39 |
32 38
|
mpan9 |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
40 |
|
nesym |
|- ( N =/= [_ t / j ]_ [_ <. T , U >. / s ]_ C <-> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) |
41 |
39 40
|
sylib |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) |
42 |
|
nfv |
|- F/ j ( ph /\ t e. ( 0 ... N ) ) |
43 |
34
|
nfel1 |
|- F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) |
44 |
42 43
|
nfim |
|- F/ j ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
45 |
|
eleq1w |
|- ( j = t -> ( j e. ( 0 ... N ) <-> t e. ( 0 ... N ) ) ) |
46 |
45
|
anbi2d |
|- ( j = t -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ t e. ( 0 ... N ) ) ) ) |
47 |
36
|
eleq1d |
|- ( j = t -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) |
48 |
46 47
|
imbi12d |
|- ( j = t -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) <-> ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) ) |
49 |
|
ovex |
|- ( 0 ..^ K ) e. _V |
50 |
|
ovex |
|- ( 1 ... N ) e. _V |
51 |
49 50
|
elmap |
|- ( T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> T : ( 1 ... N ) --> ( 0 ..^ K ) ) |
52 |
4 51
|
sylibr |
|- ( ph -> T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
53 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
54 |
|
f1oexrnex |
|- ( ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( 1 ... N ) e. Fin ) -> U e. _V ) |
55 |
53 54
|
mpan2 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U e. _V ) |
56 |
|
f1oeq1 |
|- ( f = U -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
57 |
56
|
elabg |
|- ( U e. _V -> ( U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
58 |
55 57
|
syl |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
59 |
58
|
ibir |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
60 |
5 59
|
syl |
|- ( ph -> U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
61 |
|
opelxpi |
|- ( ( T e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) /\ U e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
62 |
52 60 61
|
syl2anc |
|- ( ph -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
63 |
62
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
64 |
|
nfcv |
|- F/_ s <. T , U >. |
65 |
|
nfv |
|- F/ s ( ph /\ j e. ( 0 ... N ) ) |
66 |
|
nfcsb1v |
|- F/_ s [_ <. T , U >. / s ]_ C |
67 |
66
|
nfel1 |
|- F/ s [_ <. T , U >. / s ]_ C e. ( 0 ... N ) |
68 |
65 67
|
nfim |
|- F/ s ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
69 |
|
csbeq1a |
|- ( s = <. T , U >. -> C = [_ <. T , U >. / s ]_ C ) |
70 |
69
|
eleq1d |
|- ( s = <. T , U >. -> ( C e. ( 0 ... N ) <-> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) |
71 |
70
|
imbi2d |
|- ( s = <. T , U >. -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> C e. ( 0 ... N ) ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) ) |
72 |
|
elun |
|- ( p e. ( { 1 } u. { 0 } ) <-> ( p e. { 1 } \/ p e. { 0 } ) ) |
73 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ K ) -> ( i + 1 ) e. ( 0 ... K ) ) |
74 |
|
elsni |
|- ( p e. { 1 } -> p = 1 ) |
75 |
74
|
oveq2d |
|- ( p e. { 1 } -> ( i + p ) = ( i + 1 ) ) |
76 |
75
|
eleq1d |
|- ( p e. { 1 } -> ( ( i + p ) e. ( 0 ... K ) <-> ( i + 1 ) e. ( 0 ... K ) ) ) |
77 |
73 76
|
syl5ibrcom |
|- ( i e. ( 0 ..^ K ) -> ( p e. { 1 } -> ( i + p ) e. ( 0 ... K ) ) ) |
78 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ K ) -> i e. NN0 ) |
79 |
78
|
nn0cnd |
|- ( i e. ( 0 ..^ K ) -> i e. CC ) |
80 |
79
|
addid1d |
|- ( i e. ( 0 ..^ K ) -> ( i + 0 ) = i ) |
81 |
|
elfzofz |
|- ( i e. ( 0 ..^ K ) -> i e. ( 0 ... K ) ) |
82 |
80 81
|
eqeltrd |
|- ( i e. ( 0 ..^ K ) -> ( i + 0 ) e. ( 0 ... K ) ) |
83 |
|
elsni |
|- ( p e. { 0 } -> p = 0 ) |
84 |
83
|
oveq2d |
|- ( p e. { 0 } -> ( i + p ) = ( i + 0 ) ) |
85 |
84
|
eleq1d |
|- ( p e. { 0 } -> ( ( i + p ) e. ( 0 ... K ) <-> ( i + 0 ) e. ( 0 ... K ) ) ) |
86 |
82 85
|
syl5ibrcom |
|- ( i e. ( 0 ..^ K ) -> ( p e. { 0 } -> ( i + p ) e. ( 0 ... K ) ) ) |
87 |
77 86
|
jaod |
|- ( i e. ( 0 ..^ K ) -> ( ( p e. { 1 } \/ p e. { 0 } ) -> ( i + p ) e. ( 0 ... K ) ) ) |
88 |
72 87
|
syl5bi |
|- ( i e. ( 0 ..^ K ) -> ( p e. ( { 1 } u. { 0 } ) -> ( i + p ) e. ( 0 ... K ) ) ) |
89 |
88
|
imp |
|- ( ( i e. ( 0 ..^ K ) /\ p e. ( { 1 } u. { 0 } ) ) -> ( i + p ) e. ( 0 ... K ) ) |
90 |
89
|
adantl |
|- ( ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) /\ ( i e. ( 0 ..^ K ) /\ p e. ( { 1 } u. { 0 } ) ) ) -> ( i + p ) e. ( 0 ... K ) ) |
91 |
|
xp1st |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
92 |
|
elmapi |
|- ( ( 1st ` s ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
93 |
91 92
|
syl |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
94 |
93
|
adantr |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( 1st ` s ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
95 |
|
xp2nd |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` s ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
96 |
|
fvex |
|- ( 2nd ` s ) e. _V |
97 |
|
f1oeq1 |
|- ( f = ( 2nd ` s ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
98 |
96 97
|
elab |
|- ( ( 2nd ` s ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
99 |
95 98
|
sylib |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
100 |
|
1ex |
|- 1 e. _V |
101 |
100
|
fconst |
|- ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } |
102 |
|
c0ex |
|- 0 e. _V |
103 |
102
|
fconst |
|- ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } |
104 |
101 103
|
pm3.2i |
|- ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) |
105 |
|
dff1o3 |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` s ) ) ) |
106 |
|
imain |
|- ( Fun `' ( 2nd ` s ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) ) |
107 |
105 106
|
simplbiim |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) ) |
108 |
|
elfznn0 |
|- ( j e. ( 0 ... N ) -> j e. NN0 ) |
109 |
108
|
nn0red |
|- ( j e. ( 0 ... N ) -> j e. RR ) |
110 |
109
|
ltp1d |
|- ( j e. ( 0 ... N ) -> j < ( j + 1 ) ) |
111 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
112 |
110 111
|
syl |
|- ( j e. ( 0 ... N ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) = (/) ) |
113 |
112
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` s ) " (/) ) ) |
114 |
|
ima0 |
|- ( ( 2nd ` s ) " (/) ) = (/) |
115 |
113 114
|
eqtrdi |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... N ) ) ) = (/) ) |
116 |
107 115
|
sylan9req |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = (/) ) |
117 |
|
fun |
|- ( ( ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) : ( ( 2nd ` s ) " ( 1 ... j ) ) --> { 1 } /\ ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) : ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( 2nd ` s ) " ( 1 ... j ) ) i^i ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
118 |
104 116 117
|
sylancr |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) |
119 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
120 |
108 119
|
syl |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. NN ) |
121 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
122 |
120 121
|
eleqtrdi |
|- ( j e. ( 0 ... N ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
123 |
|
elfzuz3 |
|- ( j e. ( 0 ... N ) -> N e. ( ZZ>= ` j ) ) |
124 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` j ) ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
125 |
122 123 124
|
syl2anc |
|- ( j e. ( 0 ... N ) -> ( 1 ... N ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) |
126 |
125
|
imaeq2d |
|- ( j e. ( 0 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( ( 2nd ` s ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) ) |
127 |
|
imaundi |
|- ( ( 2nd ` s ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... N ) ) ) = ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) |
128 |
126 127
|
eqtr2di |
|- ( j e. ( 0 ... N ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = ( ( 2nd ` s ) " ( 1 ... N ) ) ) |
129 |
|
f1ofo |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
130 |
|
foima |
|- ( ( 2nd ` s ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
131 |
129 130
|
syl |
|- ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` s ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
132 |
128 131
|
sylan9eqr |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
133 |
132
|
feq2d |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( 2nd ` s ) " ( 1 ... j ) ) u. ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) |
134 |
118 133
|
mpbid |
|- ( ( ( 2nd ` s ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
135 |
99 134
|
sylan |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) |
136 |
|
fzfid |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( 1 ... N ) e. Fin ) |
137 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
138 |
90 94 135 136 136 137
|
off |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) |
139 |
|
ovex |
|- ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
140 |
|
feq1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p : ( 1 ... N ) --> ( 0 ... K ) <-> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) |
141 |
140
|
anbi2d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) <-> ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) ) ) |
142 |
2
|
eleq1d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( B e. ( 0 ... N ) <-> C e. ( 0 ... N ) ) ) |
143 |
141 142
|
imbi12d |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) <-> ( ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> C e. ( 0 ... N ) ) ) ) |
144 |
139 143 3
|
vtocl |
|- ( ( ph /\ ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) : ( 1 ... N ) --> ( 0 ... K ) ) -> C e. ( 0 ... N ) ) |
145 |
138 144
|
sylan2 |
|- ( ( ph /\ ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ j e. ( 0 ... N ) ) ) -> C e. ( 0 ... N ) ) |
146 |
145
|
an12s |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( ph /\ j e. ( 0 ... N ) ) ) -> C e. ( 0 ... N ) ) |
147 |
146
|
ex |
|- ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( ph /\ j e. ( 0 ... N ) ) -> C e. ( 0 ... N ) ) ) |
148 |
64 68 71 147
|
vtoclgaf |
|- ( <. T , U >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) ) |
149 |
63 148
|
mpcom |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
150 |
44 48 149
|
chvarfv |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) ) |
151 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
152 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
153 |
151 152
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
154 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) |
155 |
153 154
|
syl |
|- ( ph -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) |
156 |
155
|
adantr |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) ) |
157 |
150 156
|
mpbid |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) |
158 |
157
|
ord |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( -. [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = N ) ) |
159 |
41 158
|
mt3d |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
160 |
159
|
adantrr |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
161 |
|
fzfi |
|- ( 0 ... ( N - 1 ) ) e. Fin |
162 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
163 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
164 |
162 163 163
|
addsubd |
|- ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) |
165 |
|
hashfz0 |
|- ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
166 |
151 165
|
syl |
|- ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
167 |
166
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
168 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
169 |
|
hashfz0 |
|- ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
170 |
1 168 169
|
3syl |
|- ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
171 |
164 167 170
|
3eqtr4rd |
|- ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
172 |
|
hashdifsn |
|- ( ( ( 0 ... N ) e. Fin /\ t e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { t } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
173 |
14 172
|
mpan |
|- ( t e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { t } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
174 |
173
|
eqcomd |
|- ( t e. ( 0 ... N ) -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( ( 0 ... N ) \ { t } ) ) ) |
175 |
171 174
|
sylan9eq |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) ) |
176 |
|
diffi |
|- ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { t } ) e. Fin ) |
177 |
14 176
|
ax-mp |
|- ( ( 0 ... N ) \ { t } ) e. Fin |
178 |
|
hashen |
|- ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( ( 0 ... N ) \ { t } ) e. Fin ) -> ( ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) ) |
179 |
161 177 178
|
mp2an |
|- ( ( # ` ( 0 ... ( N - 1 ) ) ) = ( # ` ( ( 0 ... N ) \ { t } ) ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) |
180 |
175 179
|
sylib |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) |
181 |
|
phpreu |
|- ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
182 |
161 180 181
|
sylancr |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
183 |
182
|
biimpd |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
184 |
183
|
impr |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) |
185 |
|
nfv |
|- F/ z i = [_ <. T , U >. / s ]_ C |
186 |
|
nfcsb1v |
|- F/_ j [_ z / j ]_ [_ <. T , U >. / s ]_ C |
187 |
186
|
nfeq2 |
|- F/ j i = [_ z / j ]_ [_ <. T , U >. / s ]_ C |
188 |
|
csbeq1a |
|- ( j = z -> [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
189 |
188
|
eqeq2d |
|- ( j = z -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
190 |
185 187 189
|
cbvreuw |
|- ( E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
191 |
|
eqeq1 |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
192 |
191
|
reubidv |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! z e. ( ( 0 ... N ) \ { t } ) i = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
193 |
190 192
|
syl5bb |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
194 |
193
|
rspcv |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C -> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
195 |
160 184 194
|
sylc |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
196 |
|
an32 |
|- ( ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ z e. ( ( 0 ... N ) \ { t } ) ) <-> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
197 |
196
|
biimpi |
|- ( ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
198 |
197
|
adantll |
|- ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
199 |
|
eqeq2 |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
200 |
|
rexsns |
|- ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> [. t / j ]. i = [_ <. T , U >. / s ]_ C ) |
201 |
34
|
nfeq2 |
|- F/ j i = [_ t / j ]_ [_ <. T , U >. / s ]_ C |
202 |
36
|
eqeq2d |
|- ( j = t -> ( i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
203 |
201 202
|
sbciegf |
|- ( t e. _V -> ( [. t / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) ) |
204 |
13 203
|
ax-mp |
|- ( [. t / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
205 |
200 204
|
bitri |
|- ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> i = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
206 |
|
rexsns |
|- ( E. j e. { z } i = [_ <. T , U >. / s ]_ C <-> [. z / j ]. i = [_ <. T , U >. / s ]_ C ) |
207 |
|
vex |
|- z e. _V |
208 |
187 189
|
sbciegf |
|- ( z e. _V -> ( [. z / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
209 |
207 208
|
ax-mp |
|- ( [. z / j ]. i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
210 |
206 209
|
bitri |
|- ( E. j e. { z } i = [_ <. T , U >. / s ]_ C <-> i = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
211 |
199 205 210
|
3bitr4g |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. { t } i = [_ <. T , U >. / s ]_ C <-> E. j e. { z } i = [_ <. T , U >. / s ]_ C ) ) |
212 |
211
|
orbi1d |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( ( E. j e. { t } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( E. j e. { z } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) ) |
213 |
|
rexun |
|- ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> ( E. j e. { t } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
214 |
|
rexun |
|- ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> ( E. j e. { z } i = [_ <. T , U >. / s ]_ C \/ E. j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
215 |
212 213 214
|
3bitr4g |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C ) ) |
216 |
215
|
adantl |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C ) ) |
217 |
|
eldifsni |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> z =/= t ) |
218 |
217
|
necomd |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> t =/= z ) |
219 |
|
dif32 |
|- ( ( ( 0 ... N ) \ { t } ) \ { z } ) = ( ( ( 0 ... N ) \ { z } ) \ { t } ) |
220 |
219
|
uneq2i |
|- ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) |
221 |
|
snssi |
|- ( t e. ( ( 0 ... N ) \ { z } ) -> { t } C_ ( ( 0 ... N ) \ { z } ) ) |
222 |
|
eldifsn |
|- ( t e. ( ( 0 ... N ) \ { z } ) <-> ( t e. ( 0 ... N ) /\ t =/= z ) ) |
223 |
|
undif |
|- ( { t } C_ ( ( 0 ... N ) \ { z } ) <-> ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) = ( ( 0 ... N ) \ { z } ) ) |
224 |
221 222 223
|
3imtr3i |
|- ( ( t e. ( 0 ... N ) /\ t =/= z ) -> ( { t } u. ( ( ( 0 ... N ) \ { z } ) \ { t } ) ) = ( ( 0 ... N ) \ { z } ) ) |
225 |
220 224
|
syl5eq |
|- ( ( t e. ( 0 ... N ) /\ t =/= z ) -> ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { z } ) ) |
226 |
218 225
|
sylan2 |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { z } ) ) |
227 |
226
|
rexeqdv |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
228 |
227
|
adantr |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { t } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
229 |
|
snssi |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> { z } C_ ( ( 0 ... N ) \ { t } ) ) |
230 |
|
undif |
|- ( { z } C_ ( ( 0 ... N ) \ { t } ) <-> ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { t } ) ) |
231 |
229 230
|
sylib |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) = ( ( 0 ... N ) \ { t } ) ) |
232 |
231
|
rexeqdv |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
233 |
232
|
ad2antlr |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( { z } u. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
234 |
216 228 233
|
3bitr3d |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
235 |
234
|
ralbidv |
|- ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) |
236 |
235
|
biimpar |
|- ( ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
237 |
236
|
an32s |
|- ( ( ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
238 |
198 237
|
sylan |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
239 |
|
simpl |
|- ( ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> t e. ( 0 ... N ) ) |
240 |
239
|
anim2i |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( ph /\ t e. ( 0 ... N ) ) ) |
241 |
|
necom |
|- ( z =/= t <-> t =/= z ) |
242 |
241
|
biimpi |
|- ( z =/= t -> t =/= z ) |
243 |
242
|
adantl |
|- ( ( z e. ( 0 ... N ) /\ z =/= t ) -> t =/= z ) |
244 |
243
|
anim2i |
|- ( ( t e. ( 0 ... N ) /\ ( z e. ( 0 ... N ) /\ z =/= t ) ) -> ( t e. ( 0 ... N ) /\ t =/= z ) ) |
245 |
|
eldifsn |
|- ( z e. ( ( 0 ... N ) \ { t } ) <-> ( z e. ( 0 ... N ) /\ z =/= t ) ) |
246 |
245
|
anbi2i |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) <-> ( t e. ( 0 ... N ) /\ ( z e. ( 0 ... N ) /\ z =/= t ) ) ) |
247 |
244 246 222
|
3imtr4i |
|- ( ( t e. ( 0 ... N ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> t e. ( ( 0 ... N ) \ { z } ) ) |
248 |
247
|
adantll |
|- ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> t e. ( ( 0 ... N ) \ { z } ) ) |
249 |
248
|
adantr |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> t e. ( ( 0 ... N ) \ { z } ) ) |
250 |
34
|
nfel1 |
|- F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) |
251 |
42 250
|
nfim |
|- F/ j ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
252 |
36
|
eleq1d |
|- ( j = t -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
253 |
46 252
|
imbi12d |
|- ( j = t -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) <-> ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) ) |
254 |
6
|
necomd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C =/= N ) |
255 |
254
|
neneqd |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> -. [_ <. T , U >. / s ]_ C = N ) |
256 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) |
257 |
153 256
|
syl |
|- ( ph -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) |
258 |
257
|
adantr |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... N ) <-> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) ) |
259 |
149 258
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) \/ [_ <. T , U >. / s ]_ C = N ) ) |
260 |
259
|
ord |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( -. [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> [_ <. T , U >. / s ]_ C = N ) ) |
261 |
255 260
|
mt3d |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
262 |
251 253 261
|
chvarfv |
|- ( ( ph /\ t e. ( 0 ... N ) ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
263 |
262
|
ad2antrr |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
264 |
|
eldifi |
|- ( z e. ( ( 0 ... N ) \ { t } ) -> z e. ( 0 ... N ) ) |
265 |
|
eleq1w |
|- ( t = z -> ( t e. ( 0 ... N ) <-> z e. ( 0 ... N ) ) ) |
266 |
265
|
anbi2d |
|- ( t = z -> ( ( ph /\ t e. ( 0 ... N ) ) <-> ( ph /\ z e. ( 0 ... N ) ) ) ) |
267 |
|
sneq |
|- ( t = z -> { t } = { z } ) |
268 |
267
|
difeq2d |
|- ( t = z -> ( ( 0 ... N ) \ { t } ) = ( ( 0 ... N ) \ { z } ) ) |
269 |
268
|
breq2d |
|- ( t = z -> ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) <-> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) ) |
270 |
266 269
|
imbi12d |
|- ( t = z -> ( ( ( ph /\ t e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { t } ) ) <-> ( ( ph /\ z e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) ) ) |
271 |
270 180
|
chvarvv |
|- ( ( ph /\ z e. ( 0 ... N ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) |
272 |
264 271
|
sylan2 |
|- ( ( ph /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) |
273 |
272
|
adantlr |
|- ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) |
274 |
|
phpreu |
|- ( ( ( 0 ... ( N - 1 ) ) e. Fin /\ ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
275 |
161 274
|
mpan |
|- ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
276 |
275
|
biimpa |
|- ( ( ( 0 ... ( N - 1 ) ) ~~ ( ( 0 ... N ) \ { z } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
277 |
273 276
|
sylan |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
278 |
|
eqeq1 |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( i = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
279 |
278
|
adantr |
|- ( ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C /\ j e. ( ( 0 ... N ) \ { z } ) ) -> ( i = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
280 |
201 279
|
reubida |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
281 |
280
|
rspcv |
|- ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E! j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C -> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
282 |
263 277 281
|
sylc |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
283 |
|
reurmo |
|- ( E! j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
284 |
282 283
|
syl |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
285 |
|
nfv |
|- F/ i [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C |
286 |
285
|
rmo3 |
|- ( E* j e. ( ( 0 ... N ) \ { z } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) ) |
287 |
284 286
|
sylib |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) ) |
288 |
|
equcomi |
|- ( i = t -> t = i ) |
289 |
288
|
csbeq1d |
|- ( i = t -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) |
290 |
|
sbsbc |
|- ( [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
291 |
|
vex |
|- i e. _V |
292 |
|
sbceqg |
|- ( i e. _V -> ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) |
293 |
34
|
csbconstgf |
|- ( i e. _V -> [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ t / j ]_ [_ <. T , U >. / s ]_ C ) |
294 |
293
|
eqeq1d |
|- ( i e. _V -> ( [_ i / j ]_ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) |
295 |
292 294
|
bitrd |
|- ( i e. _V -> ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) ) |
296 |
291 295
|
ax-mp |
|- ( [. i / j ]. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) |
297 |
290 296
|
bitri |
|- ( [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ i / j ]_ [_ <. T , U >. / s ]_ C ) |
298 |
289 297
|
sylibr |
|- ( i = t -> [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
299 |
298
|
biantrud |
|- ( i = t -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
300 |
299
|
bicomd |
|- ( i = t -> ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
301 |
|
eqeq2 |
|- ( i = t -> ( j = i <-> j = t ) ) |
302 |
300 301
|
imbi12d |
|- ( i = t -> ( ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) |
303 |
302
|
rspcv |
|- ( t e. ( ( 0 ... N ) \ { z } ) -> ( A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) |
304 |
303
|
ralimdv |
|- ( t e. ( ( 0 ... N ) \ { z } ) -> ( A. j e. ( ( 0 ... N ) \ { z } ) A. i e. ( ( 0 ... N ) \ { z } ) ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C /\ [ i / j ] [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> j = i ) -> A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) ) |
305 |
249 287 304
|
sylc |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) ) |
306 |
|
dif32 |
|- ( ( ( 0 ... N ) \ { z } ) \ { t } ) = ( ( ( 0 ... N ) \ { t } ) \ { z } ) |
307 |
306
|
eleq2i |
|- ( j e. ( ( ( 0 ... N ) \ { z } ) \ { t } ) <-> j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) ) |
308 |
|
eldifsn |
|- ( j e. ( ( ( 0 ... N ) \ { z } ) \ { t } ) <-> ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) ) |
309 |
|
eldifsn |
|- ( j e. ( ( ( 0 ... N ) \ { t } ) \ { z } ) <-> ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) ) |
310 |
307 308 309
|
3bitr3ri |
|- ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) <-> ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) ) |
311 |
310
|
imbi1i |
|- ( ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
312 |
|
impexp |
|- ( ( ( j e. ( ( 0 ... N ) \ { t } ) /\ j =/= z ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
313 |
|
impexp |
|- ( ( ( j e. ( ( 0 ... N ) \ { z } ) /\ j =/= t ) -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
314 |
311 312 313
|
3bitr3ri |
|- ( ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) <-> ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
315 |
314
|
albii |
|- ( A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) <-> A. j ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
316 |
|
con34b |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> ( -. j = t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
317 |
|
df-ne |
|- ( j =/= t <-> -. j = t ) |
318 |
317
|
imbi1i |
|- ( ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( -. j = t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
319 |
316 318
|
bitr4i |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
320 |
319
|
ralbii |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j e. ( ( 0 ... N ) \ { z } ) ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
321 |
|
df-ral |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
322 |
320 321
|
bitri |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j ( j e. ( ( 0 ... N ) \ { z } ) -> ( j =/= t -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
323 |
|
df-ral |
|- ( A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> A. j ( j e. ( ( 0 ... N ) \ { t } ) -> ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
324 |
315 322 323
|
3bitr4i |
|- ( A. j e. ( ( 0 ... N ) \ { z } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = t ) <-> A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
325 |
305 324
|
sylib |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
326 |
|
df-ne |
|- ( j =/= z <-> -. j = z ) |
327 |
326
|
imbi1i |
|- ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( -. j = z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
328 |
|
con34b |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) <-> ( -. j = z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
329 |
327 328
|
bitr4i |
|- ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) ) |
330 |
|
ancr |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> j = z ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
331 |
329 330
|
sylbi |
|- ( ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
332 |
331
|
ralimi |
|- ( A. j e. ( ( 0 ... N ) \ { t } ) ( j =/= z -> -. [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
333 |
325 332
|
syl |
|- ( ( ( ( ph /\ t e. ( 0 ... N ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
334 |
240 333
|
sylanl1 |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
335 |
201 278
|
rexbid |
|- ( i = [_ t / j ]_ [_ <. T , U >. / s ]_ C -> ( E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
336 |
335
|
rspcva |
|- ( ( [_ t / j ]_ [_ <. T , U >. / s ]_ C e. ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
337 |
262 336
|
sylan |
|- ( ( ( ph /\ t e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
338 |
337
|
anasss |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
339 |
338
|
ad2antrr |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) |
340 |
|
rexim |
|- ( A. j e. ( ( 0 ... N ) \ { t } ) ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) -> ( E. j e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C -> E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) ) |
341 |
334 339 340
|
sylc |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
342 |
|
rexex |
|- ( E. j e. ( ( 0 ... N ) \ { t } ) ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) -> E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
343 |
341 342
|
syl |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) ) |
344 |
34 186
|
nfeq |
|- F/ j [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C |
345 |
188
|
eqeq2d |
|- ( j = z -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) ) |
346 |
344 345
|
equsexv |
|- ( E. j ( j = z /\ [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ <. T , U >. / s ]_ C ) <-> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
347 |
343 346
|
sylib |
|- ( ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) -> [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C ) |
348 |
238 347
|
impbida |
|- ( ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) /\ z e. ( ( 0 ... N ) \ { t } ) ) -> ( [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
349 |
348
|
reubidva |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( E! z e. ( ( 0 ... N ) \ { t } ) [_ t / j ]_ [_ <. T , U >. / s ]_ C = [_ z / j ]_ [_ <. T , U >. / s ]_ C <-> E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
350 |
195 349
|
mpbid |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) |
351 |
|
an32 |
|- ( ( ( z e. ( 0 ... N ) /\ z =/= t ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) /\ z =/= t ) ) |
352 |
245
|
anbi1i |
|- ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( ( z e. ( 0 ... N ) /\ z =/= t ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
353 |
|
sneq |
|- ( y = z -> { y } = { z } ) |
354 |
353
|
difeq2d |
|- ( y = z -> ( ( 0 ... N ) \ { y } ) = ( ( 0 ... N ) \ { z } ) ) |
355 |
354
|
rexeqdv |
|- ( y = z -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
356 |
355
|
ralbidv |
|- ( y = z -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
357 |
356
|
elrab |
|- ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } <-> ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
358 |
357
|
anbi1i |
|- ( ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) <-> ( ( z e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) /\ z =/= t ) ) |
359 |
351 352 358
|
3bitr4i |
|- ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) ) |
360 |
|
eldifsn |
|- ( z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) <-> ( z e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } /\ z =/= t ) ) |
361 |
359 360
|
bitr4i |
|- ( ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
362 |
361
|
eubii |
|- ( E! z ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
363 |
|
df-reu |
|- ( E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> E! z ( z e. ( ( 0 ... N ) \ { t } ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C ) ) |
364 |
|
euhash1 |
|- ( ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) e. Fin -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) ) |
365 |
18 364
|
ax-mp |
|- ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 <-> E! z z e. ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) |
366 |
362 363 365
|
3bitr4i |
|- ( E! z e. ( ( 0 ... N ) \ { t } ) A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { z } ) i = [_ <. T , U >. / s ]_ C <-> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) |
367 |
350 366
|
sylib |
|- ( ( ph /\ ( t e. ( 0 ... N ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { t } ) i = [_ <. T , U >. / s ]_ C ) ) -> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) |
368 |
31 367
|
sylan2b |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) = 1 ) |
369 |
368
|
oveq1d |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( ( # ` ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } \ { t } ) ) + 1 ) = ( 1 + 1 ) ) |
370 |
26 369
|
eqtr3d |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) = ( 1 + 1 ) ) |
371 |
12 370
|
breqtrrid |
|- ( ( ph /\ t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
372 |
371
|
ex |
|- ( ph -> ( t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) |
373 |
372
|
exlimdv |
|- ( ph -> ( E. t t e. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) |
374 |
7 373
|
syl5bi |
|- ( ph -> ( -. { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) ) |
375 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
376 |
8 375
|
ax-mp |
|- 2 || 0 |
377 |
|
hash0 |
|- ( # ` (/) ) = 0 |
378 |
376 377
|
breqtrri |
|- 2 || ( # ` (/) ) |
379 |
|
fveq2 |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) = ( # ` (/) ) ) |
380 |
378 379
|
breqtrrid |
|- ( { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } = (/) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |
381 |
374 380
|
pm2.61d2 |
|- ( ph -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ <. T , U >. / s ]_ C } ) ) |