| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
| 3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 4 |
|
fzofi |
|- ( 0 ..^ K ) e. Fin |
| 5 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 6 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin ) |
| 7 |
4 5 6
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin |
| 8 |
|
mapfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin ) |
| 9 |
5 5 8
|
mp2an |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin |
| 10 |
|
f1of |
|- ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) ) |
| 11 |
10
|
ss2abi |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
| 12 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 13 |
12 12
|
mapval |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
| 14 |
11 13
|
sseqtrri |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) |
| 15 |
|
ssfi |
|- ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
| 16 |
9 14 15
|
mp2an |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin |
| 17 |
7 16
|
pm3.2i |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
| 18 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) |
| 19 |
17 18
|
mp1i |
|- ( ph -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) |
| 20 |
|
2z |
|- 2 e. ZZ |
| 21 |
20
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 22 |
|
snfi |
|- { x } e. Fin |
| 23 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
| 24 |
|
rabfi |
|- ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) |
| 25 |
23 24
|
ax-mp |
|- { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin |
| 26 |
|
xpfi |
|- ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin ) |
| 27 |
22 25 26
|
mp2an |
|- ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin |
| 28 |
|
hashcl |
|- ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 ) |
| 29 |
27 28
|
ax-mp |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 |
| 30 |
29
|
nn0zi |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ |
| 31 |
30
|
a1i |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ ) |
| 32 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> N e. NN ) |
| 33 |
|
nfv |
|- F/ j p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 34 |
|
nfcsb1v |
|- F/_ j [_ k / j ]_ [_ t / s ]_ C |
| 35 |
34
|
nfeq2 |
|- F/ j B = [_ k / j ]_ [_ t / s ]_ C |
| 36 |
33 35
|
nfim |
|- F/ j ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) |
| 37 |
|
oveq2 |
|- ( j = k -> ( 1 ... j ) = ( 1 ... k ) ) |
| 38 |
37
|
imaeq2d |
|- ( j = k -> ( ( 2nd ` t ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... k ) ) ) |
| 39 |
38
|
xpeq1d |
|- ( j = k -> ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) ) |
| 40 |
|
oveq1 |
|- ( j = k -> ( j + 1 ) = ( k + 1 ) ) |
| 41 |
40
|
oveq1d |
|- ( j = k -> ( ( j + 1 ) ... N ) = ( ( k + 1 ) ... N ) ) |
| 42 |
41
|
imaeq2d |
|- ( j = k -> ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) ) |
| 43 |
42
|
xpeq1d |
|- ( j = k -> ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) |
| 44 |
39 43
|
uneq12d |
|- ( j = k -> ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 45 |
44
|
oveq2d |
|- ( j = k -> ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 46 |
45
|
eqeq2d |
|- ( j = k -> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 47 |
|
csbeq1a |
|- ( j = k -> [_ t / s ]_ C = [_ k / j ]_ [_ t / s ]_ C ) |
| 48 |
47
|
eqeq2d |
|- ( j = k -> ( B = [_ t / s ]_ C <-> B = [_ k / j ]_ [_ t / s ]_ C ) ) |
| 49 |
46 48
|
imbi12d |
|- ( j = k -> ( ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) ) ) |
| 50 |
|
nfv |
|- F/ s p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 51 |
|
nfcsb1v |
|- F/_ s [_ t / s ]_ C |
| 52 |
51
|
nfeq2 |
|- F/ s B = [_ t / s ]_ C |
| 53 |
50 52
|
nfim |
|- F/ s ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) |
| 54 |
|
fveq2 |
|- ( s = t -> ( 1st ` s ) = ( 1st ` t ) ) |
| 55 |
|
fveq2 |
|- ( s = t -> ( 2nd ` s ) = ( 2nd ` t ) ) |
| 56 |
55
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... j ) ) ) |
| 57 |
56
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 58 |
55
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) ) |
| 59 |
58
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 60 |
57 59
|
uneq12d |
|- ( s = t -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 61 |
54 60
|
oveq12d |
|- ( s = t -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 62 |
61
|
eqeq2d |
|- ( s = t -> ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 63 |
|
csbeq1a |
|- ( s = t -> C = [_ t / s ]_ C ) |
| 64 |
63
|
eqeq2d |
|- ( s = t -> ( B = C <-> B = [_ t / s ]_ C ) ) |
| 65 |
62 64
|
imbi12d |
|- ( s = t -> ( ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) ) ) |
| 66 |
53 65 2
|
chvarfv |
|- ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) |
| 67 |
36 49 66
|
chvarfv |
|- ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) |
| 68 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
| 69 |
|
xp1st |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 70 |
|
elmapi |
|- ( ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 71 |
69 70
|
syl |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 72 |
71
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 73 |
|
xp2nd |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 74 |
|
fvex |
|- ( 2nd ` x ) e. _V |
| 75 |
|
f1oeq1 |
|- ( f = ( 2nd ` x ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 76 |
74 75
|
elab |
|- ( ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 77 |
73 76
|
sylib |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 78 |
77
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 79 |
|
nfcv |
|- F/_ j N |
| 80 |
|
nfcv |
|- F/_ j x |
| 81 |
80 34
|
nfcsbw |
|- F/_ j [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C |
| 82 |
79 81
|
nfne |
|- F/ j N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C |
| 83 |
|
nfcv |
|- F/_ t C |
| 84 |
83 51 63
|
cbvcsbw |
|- [_ x / s ]_ C = [_ x / t ]_ [_ t / s ]_ C |
| 85 |
47
|
csbeq2dv |
|- ( j = k -> [_ x / t ]_ [_ t / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 86 |
84 85
|
eqtrid |
|- ( j = k -> [_ x / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 87 |
86
|
neeq2d |
|- ( j = k -> ( N =/= [_ x / s ]_ C <-> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
| 88 |
82 87
|
rspc |
|- ( k e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
| 89 |
88
|
impcom |
|- ( ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 90 |
89
|
adantll |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 91 |
|
1st2nd2 |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 92 |
91
|
csbeq1d |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 93 |
92
|
ad3antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 94 |
90 93
|
neeqtrd |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 95 |
32 67 68 72 78 94
|
poimirlem25 |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) ) |
| 96 |
|
nfv |
|- F/ k i = [_ x / s ]_ C |
| 97 |
81
|
nfeq2 |
|- F/ j i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C |
| 98 |
86
|
eqeq2d |
|- ( j = k -> ( i = [_ x / s ]_ C <-> i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
| 99 |
96 97 98
|
cbvrexw |
|- ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
| 100 |
92
|
eqeq2d |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
| 101 |
100
|
rexbidv |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
| 102 |
99 101
|
bitr2id |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
| 103 |
102
|
ralbidv |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
| 104 |
|
iba |
|- ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
| 105 |
103 104
|
sylan9bb |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
| 106 |
105
|
rabbidv |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
| 107 |
106
|
fveq2d |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 108 |
107
|
adantll |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 109 |
95 108
|
breqtrd |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 110 |
109
|
ex |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 111 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
| 112 |
20 111
|
ax-mp |
|- 2 || 0 |
| 113 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 114 |
112 113
|
breqtrri |
|- 2 || ( # ` (/) ) |
| 115 |
|
simpr |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) |
| 116 |
115
|
con3i |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
| 117 |
116
|
ralrimivw |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
| 118 |
|
rabeq0 |
|- ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) <-> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
| 119 |
117 118
|
sylibr |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) ) |
| 120 |
119
|
fveq2d |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( # ` (/) ) ) |
| 121 |
114 120
|
breqtrrid |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 122 |
110 121
|
pm2.61d1 |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 123 |
|
hashxp |
|- ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 124 |
22 25 123
|
mp2an |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 125 |
|
vex |
|- x e. _V |
| 126 |
|
hashsng |
|- ( x e. _V -> ( # ` { x } ) = 1 ) |
| 127 |
125 126
|
ax-mp |
|- ( # ` { x } ) = 1 |
| 128 |
127
|
oveq1i |
|- ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 129 |
|
hashcl |
|- ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 ) |
| 130 |
25 129
|
ax-mp |
|- ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 |
| 131 |
130
|
nn0cni |
|- ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. CC |
| 132 |
131
|
mullidi |
|- ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
| 133 |
124 128 132
|
3eqtri |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
| 134 |
122 133
|
breqtrrdi |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 135 |
19 21 31 134
|
fsumdvds |
|- ( ph -> 2 || sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 136 |
7 16 18
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin |
| 137 |
|
xpfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin ) |
| 138 |
136 23 137
|
mp2an |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin |
| 139 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin ) |
| 140 |
138 139
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin |
| 141 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 142 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 143 |
141 142
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 144 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 145 |
1 144
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 146 |
145
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 147 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 148 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 149 |
146 147 148
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 150 |
143 149
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 151 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 152 |
|
ssralv |
|- ( ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 153 |
150 151 152
|
3syl |
|- ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 154 |
153
|
adantr |
|- ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 155 |
|
raldifb |
|- ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) <-> A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) |
| 156 |
|
nfv |
|- F/ j ph |
| 157 |
|
nfcsb1v |
|- F/_ j [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
| 158 |
157
|
nfeq2 |
|- F/ j N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
| 159 |
156 158
|
nfan |
|- F/ j ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 160 |
|
nfv |
|- F/ j i e. ( 0 ... ( N - 1 ) ) |
| 161 |
159 160
|
nfan |
|- F/ j ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) |
| 162 |
|
nnel |
|- ( -. j e/ { ( 2nd ` t ) } <-> j e. { ( 2nd ` t ) } ) |
| 163 |
|
velsn |
|- ( j e. { ( 2nd ` t ) } <-> j = ( 2nd ` t ) ) |
| 164 |
162 163
|
bitri |
|- ( -. j e/ { ( 2nd ` t ) } <-> j = ( 2nd ` t ) ) |
| 165 |
|
csbeq1a |
|- ( j = ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 166 |
165
|
eqeq2d |
|- ( j = ( 2nd ` t ) -> ( N = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 167 |
166
|
biimparc |
|- ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> N = [_ ( 1st ` t ) / s ]_ C ) |
| 168 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 169 |
168
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
| 170 |
145
|
nn0red |
|- ( ph -> ( N - 1 ) e. RR ) |
| 171 |
170 168
|
ltnled |
|- ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) |
| 172 |
169 171
|
mpbid |
|- ( ph -> -. N <_ ( N - 1 ) ) |
| 173 |
|
elfzle2 |
|- ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
| 174 |
172 173
|
nsyl |
|- ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) |
| 175 |
|
eleq1 |
|- ( i = N -> ( i e. ( 0 ... ( N - 1 ) ) <-> N e. ( 0 ... ( N - 1 ) ) ) ) |
| 176 |
175
|
notbid |
|- ( i = N -> ( -. i e. ( 0 ... ( N - 1 ) ) <-> -. N e. ( 0 ... ( N - 1 ) ) ) ) |
| 177 |
174 176
|
syl5ibrcom |
|- ( ph -> ( i = N -> -. i e. ( 0 ... ( N - 1 ) ) ) ) |
| 178 |
177
|
con2d |
|- ( ph -> ( i e. ( 0 ... ( N - 1 ) ) -> -. i = N ) ) |
| 179 |
178
|
imp |
|- ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> -. i = N ) |
| 180 |
|
eqeq2 |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( i = N <-> i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 181 |
180
|
notbid |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. i = N <-> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 182 |
179 181
|
syl5ibcom |
|- ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 183 |
167 182
|
syl5 |
|- ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 184 |
183
|
expdimp |
|- ( ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 185 |
184
|
an32s |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 186 |
164 185
|
biimtrid |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 187 |
|
idd |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. i = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 188 |
186 187
|
jad |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 189 |
188
|
adantr |
|- ( ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 190 |
161 189
|
ralimdaa |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 191 |
155 190
|
biimtrrid |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 192 |
191
|
con3d |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C -> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 193 |
|
dfrex2 |
|- ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) |
| 194 |
|
dfrex2 |
|- ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) |
| 195 |
192 193 194
|
3imtr4g |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 196 |
195
|
ralimdva |
|- ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 197 |
154 196
|
syld |
|- ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 198 |
197
|
expimpd |
|- ( ph -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 199 |
198
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 200 |
199
|
ss2rabdv |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) |
| 201 |
|
hashssdif |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) |
| 202 |
140 200 201
|
sylancr |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) |
| 203 |
|
xp2nd |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) |
| 204 |
|
df-ne |
|- ( N =/= [_ ( 1st ` t ) / s ]_ C <-> -. N = [_ ( 1st ` t ) / s ]_ C ) |
| 205 |
204
|
ralbii |
|- ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C ) |
| 206 |
|
ralnex |
|- ( A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) |
| 207 |
205 206
|
bitri |
|- ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) |
| 208 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 209 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 210 |
208 209
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 211 |
143 210
|
eqeltrd |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) ) |
| 212 |
|
fzsplit2 |
|- ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
| 213 |
211 150 212
|
syl2anc |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
| 214 |
143
|
oveq1d |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) |
| 215 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 216 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
| 217 |
215 216
|
syl |
|- ( ph -> ( N ... N ) = { N } ) |
| 218 |
214 217
|
eqtrd |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) |
| 219 |
218
|
uneq2d |
|- ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
| 220 |
213 219
|
eqtrd |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
| 221 |
220
|
raleqdv |
|- ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 222 |
|
ralunb |
|- ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 223 |
|
difss |
|- ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) |
| 224 |
|
ssrexv |
|- ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 225 |
223 224
|
ax-mp |
|- ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) |
| 226 |
225
|
ralimi |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) |
| 227 |
226
|
biantrurd |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 228 |
222 227
|
bitr4id |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 229 |
221 228
|
sylan9bb |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 230 |
229
|
adantlr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 231 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 232 |
208 231
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 233 |
232
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> N e. ( 0 ... N ) ) |
| 234 |
|
eqeq1 |
|- ( i = N -> ( i = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 1st ` t ) / s ]_ C ) ) |
| 235 |
234
|
rexbidv |
|- ( i = N -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
| 236 |
235
|
rspcva |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) |
| 237 |
|
nfv |
|- F/ j ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) |
| 238 |
|
nfcv |
|- F/_ j ( 0 ... ( N - 1 ) ) |
| 239 |
|
nfre1 |
|- F/ j E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C |
| 240 |
238 239
|
nfralw |
|- F/ j A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C |
| 241 |
237 240
|
nfan |
|- F/ j ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) |
| 242 |
|
eleq1 |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( N e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 243 |
242
|
notbid |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. N e. ( 0 ... ( N - 1 ) ) <-> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 244 |
174 243
|
syl5ibcom |
|- ( ph -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 245 |
244
|
ad3antrrr |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 246 |
|
eldifsn |
|- ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) <-> ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) |
| 247 |
|
diffi |
|- ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin ) |
| 248 |
23 247
|
ax-mp |
|- ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin |
| 249 |
|
ssrab2 |
|- { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) |
| 250 |
|
ssdomg |
|- ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) ) |
| 251 |
248 249 250
|
mp2 |
|- { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) |
| 252 |
|
hashdifsn |
|- ( ( ( 0 ... N ) e. Fin /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
| 253 |
23 252
|
mpan |
|- ( ( 2nd ` t ) e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
| 254 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 255 |
141 254 254
|
addsubd |
|- ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) |
| 256 |
|
hashfz0 |
|- ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
| 257 |
208 256
|
syl |
|- ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
| 258 |
257
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 259 |
|
hashfz0 |
|- ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
| 260 |
145 259
|
syl |
|- ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
| 261 |
255 258 260
|
3eqtr4d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( 0 ... ( N - 1 ) ) ) ) |
| 262 |
253 261
|
sylan9eqr |
|- ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) ) |
| 263 |
|
fzfi |
|- ( 0 ... ( N - 1 ) ) e. Fin |
| 264 |
|
hashen |
|- ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) ) |
| 265 |
248 263 264
|
mp2an |
|- ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) |
| 266 |
262 265
|
sylib |
|- ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) |
| 267 |
|
rabfi |
|- ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin ) |
| 268 |
248 267
|
ax-mp |
|- { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin |
| 269 |
|
eleq1 |
|- ( i = [_ ( 1st ` t ) / s ]_ C -> ( i e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 270 |
269
|
biimpac |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 271 |
|
rabid |
|- ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 272 |
271
|
simplbi2com |
|- ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
| 273 |
270 272
|
syl |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
| 274 |
273
|
impancom |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
| 275 |
274
|
ancrd |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 276 |
275
|
expimpd |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 277 |
276
|
reximdv2 |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 278 |
271
|
simplbi |
|- ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
| 279 |
274
|
pm4.71rd |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 280 |
|
df-mpt |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) } |
| 281 |
|
nfv |
|- F/ k ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) |
| 282 |
|
nfrab1 |
|- F/_ j { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |
| 283 |
282
|
nfcri |
|- F/ j k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |
| 284 |
|
nfcsb1v |
|- F/_ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C |
| 285 |
284
|
nfeq2 |
|- F/ j i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C |
| 286 |
283 285
|
nfan |
|- F/ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 287 |
|
eleq1 |
|- ( j = k -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
| 288 |
|
csbeq1a |
|- ( j = k -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 289 |
288
|
eqeq2d |
|- ( j = k -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 290 |
287 289
|
anbi12d |
|- ( j = k -> ( ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) <-> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 291 |
281 286 290
|
cbvopab1 |
|- { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) } |
| 292 |
280 291
|
eqtr4i |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } |
| 293 |
292
|
breqi |
|- ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i ) |
| 294 |
|
df-br |
|- ( j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i <-> <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } ) |
| 295 |
|
opabidw |
|- ( <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 296 |
293 294 295
|
3bitri |
|- ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) |
| 297 |
279 296
|
bitr4di |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 298 |
278 297
|
sylan2 |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 299 |
298
|
rexbidva |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 300 |
|
nfcv |
|- F/_ p { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |
| 301 |
|
nfv |
|- F/ p j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i |
| 302 |
|
nfcv |
|- F/_ j p |
| 303 |
282 284
|
nfmpt |
|- F/_ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 304 |
|
nfcv |
|- F/_ j i |
| 305 |
302 303 304
|
nfbr |
|- F/ j p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i |
| 306 |
|
breq1 |
|- ( j = p -> ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 307 |
282 300 301 305 306
|
cbvrexfw |
|- ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) |
| 308 |
299 307
|
bitrdi |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 309 |
277 308
|
sylibd |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 310 |
309
|
ralimia |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) |
| 311 |
|
eqid |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 312 |
|
nfcv |
|- F/_ j k |
| 313 |
|
nfcv |
|- F/_ j ( ( 0 ... N ) \ { ( 2nd ` t ) } ) |
| 314 |
284
|
nfel1 |
|- F/ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) |
| 315 |
288
|
eleq1d |
|- ( j = k -> ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 316 |
312 313 314 315
|
elrabf |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( k e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 317 |
316
|
simprbi |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 318 |
311 317
|
fmpti |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) |
| 319 |
310 318
|
jctil |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 320 |
|
dffo4 |
|- ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) <-> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
| 321 |
319 320
|
sylibr |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) |
| 322 |
|
fodomfi |
|- ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin /\ ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
| 323 |
268 321 322
|
sylancr |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
| 324 |
|
endomtr |
|- ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) /\ ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
| 325 |
266 323 324
|
syl2an |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
| 326 |
|
sbth |
|- ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
| 327 |
251 325 326
|
sylancr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
| 328 |
|
fisseneq |
|- ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
| 329 |
248 249 327 328
|
mp3an12i |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
| 330 |
329
|
eleq2d |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) ) |
| 331 |
330
|
biimpar |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
| 332 |
288
|
equcoms |
|- ( k = j -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 333 |
332
|
eqcomd |
|- ( k = j -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` t ) / s ]_ C ) |
| 334 |
333
|
eleq1d |
|- ( k = j -> ( [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 335 |
334 317
|
vtoclga |
|- ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 336 |
331 335
|
syl |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 337 |
246 336
|
sylan2br |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
| 338 |
337
|
expr |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( j =/= ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
| 339 |
338
|
necon1bd |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> j = ( 2nd ` t ) ) ) |
| 340 |
245 339
|
syld |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> j = ( 2nd ` t ) ) ) |
| 341 |
340
|
imp |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> j = ( 2nd ` t ) ) |
| 342 |
341 165
|
syl |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 343 |
|
eqtr |
|- ( ( N = [_ ( 1st ` t ) / s ]_ C /\ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 344 |
343
|
ex |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 345 |
344
|
adantl |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 346 |
342 345
|
mpd |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 347 |
346
|
exp31 |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( 0 ... N ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 348 |
241 158 347
|
rexlimd |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 349 |
236 348
|
syl5 |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 350 |
233 349
|
mpand |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 351 |
350
|
pm4.71rd |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 352 |
235
|
ralsng |
|- ( N e. NN -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
| 353 |
1 352
|
syl |
|- ( ph -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
| 354 |
353
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
| 355 |
230 351 354
|
3bitr3rd |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 356 |
355
|
notbid |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 357 |
207 356
|
bitrid |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
| 358 |
357
|
pm5.32da |
|- ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) ) |
| 359 |
203 358
|
sylan2 |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) ) |
| 360 |
359
|
rabbidva |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } ) |
| 361 |
|
nfv |
|- F/ y t = <. x , k >. |
| 362 |
|
nfv |
|- F/ y x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 363 |
|
nfrab1 |
|- F/_ y { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } |
| 364 |
363
|
nfcri |
|- F/ y k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } |
| 365 |
362 364
|
nfan |
|- F/ y ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
| 366 |
361 365
|
nfan |
|- F/ y ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 367 |
|
nfv |
|- F/ k ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
| 368 |
|
opeq2 |
|- ( k = y -> <. x , k >. = <. x , y >. ) |
| 369 |
368
|
eqeq2d |
|- ( k = y -> ( t = <. x , k >. <-> t = <. x , y >. ) ) |
| 370 |
|
eleq1 |
|- ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 371 |
|
rabid |
|- ( y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
| 372 |
370 371
|
bitrdi |
|- ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
| 373 |
372
|
anbi2d |
|- ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) ) |
| 374 |
|
3anass |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
| 375 |
373 374
|
bitr4di |
|- ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
| 376 |
369 375
|
anbi12d |
|- ( k = y -> ( ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) ) |
| 377 |
366 367 376
|
cbvexv1 |
|- ( E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
| 378 |
377
|
exbii |
|- ( E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
| 379 |
|
eliunxp |
|- ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 380 |
|
elopab |
|- ( t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
| 381 |
378 379 380
|
3bitr4i |
|- ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } ) |
| 382 |
381
|
eqriv |
|- U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } |
| 383 |
|
vex |
|- y e. _V |
| 384 |
125 383
|
op2ndd |
|- ( t = <. x , y >. -> ( 2nd ` t ) = y ) |
| 385 |
384
|
sneqd |
|- ( t = <. x , y >. -> { ( 2nd ` t ) } = { y } ) |
| 386 |
385
|
difeq2d |
|- ( t = <. x , y >. -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { y } ) ) |
| 387 |
125 383
|
op1std |
|- ( t = <. x , y >. -> ( 1st ` t ) = x ) |
| 388 |
387
|
csbeq1d |
|- ( t = <. x , y >. -> [_ ( 1st ` t ) / s ]_ C = [_ x / s ]_ C ) |
| 389 |
388
|
eqeq2d |
|- ( t = <. x , y >. -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ x / s ]_ C ) ) |
| 390 |
386 389
|
rexeqbidv |
|- ( t = <. x , y >. -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
| 391 |
390
|
ralbidv |
|- ( t = <. x , y >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
| 392 |
388
|
neeq2d |
|- ( t = <. x , y >. -> ( N =/= [_ ( 1st ` t ) / s ]_ C <-> N =/= [_ x / s ]_ C ) ) |
| 393 |
392
|
ralbidv |
|- ( t = <. x , y >. -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
| 394 |
391 393
|
anbi12d |
|- ( t = <. x , y >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
| 395 |
394
|
rabxp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } |
| 396 |
382 395
|
eqtr4i |
|- U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } |
| 397 |
|
difrab |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } |
| 398 |
360 396 397
|
3eqtr4g |
|- ( ph -> U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) |
| 399 |
398
|
fveq2d |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) |
| 400 |
27
|
a1i |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin ) |
| 401 |
|
inxp |
|- ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) |
| 402 |
|
df-ne |
|- ( x =/= t <-> -. x = t ) |
| 403 |
|
disjsn2 |
|- ( x =/= t -> ( { x } i^i { t } ) = (/) ) |
| 404 |
402 403
|
sylbir |
|- ( -. x = t -> ( { x } i^i { t } ) = (/) ) |
| 405 |
404
|
xpeq1d |
|- ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) ) |
| 406 |
|
0xp |
|- ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) |
| 407 |
405 406
|
eqtrdi |
|- ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
| 408 |
401 407
|
eqtrid |
|- ( -. x = t -> ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
| 409 |
408
|
orri |
|- ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
| 410 |
409
|
rgen2w |
|- A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
| 411 |
|
sneq |
|- ( x = t -> { x } = { t } ) |
| 412 |
|
csbeq1 |
|- ( x = t -> [_ x / s ]_ C = [_ t / s ]_ C ) |
| 413 |
412
|
eqeq2d |
|- ( x = t -> ( i = [_ x / s ]_ C <-> i = [_ t / s ]_ C ) ) |
| 414 |
413
|
rexbidv |
|- ( x = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) ) |
| 415 |
414
|
ralbidv |
|- ( x = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) ) |
| 416 |
412
|
neeq2d |
|- ( x = t -> ( N =/= [_ x / s ]_ C <-> N =/= [_ t / s ]_ C ) ) |
| 417 |
416
|
ralbidv |
|- ( x = t -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) |
| 418 |
415 417
|
anbi12d |
|- ( x = t -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) ) |
| 419 |
418
|
rabbidv |
|- ( x = t -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) |
| 420 |
411 419
|
xpeq12d |
|- ( x = t -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) |
| 421 |
420
|
disjor |
|- ( Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) ) |
| 422 |
410 421
|
mpbir |
|- Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
| 423 |
422
|
a1i |
|- ( ph -> Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
| 424 |
19 400 423
|
hashiun |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 425 |
399 424
|
eqtr3d |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
| 426 |
|
fo1st |
|- 1st : _V -onto-> _V |
| 427 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
| 428 |
426 427
|
ax-mp |
|- Fun 1st |
| 429 |
|
ssv |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ _V |
| 430 |
|
fof |
|- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
| 431 |
426 430
|
ax-mp |
|- 1st : _V --> _V |
| 432 |
431
|
fdmi |
|- dom 1st = _V |
| 433 |
429 432
|
sseqtrri |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st |
| 434 |
|
fores |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) |
| 435 |
428 433 434
|
mp2an |
|- ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) |
| 436 |
|
fveq2 |
|- ( t = x -> ( 2nd ` t ) = ( 2nd ` x ) ) |
| 437 |
436
|
csbeq1d |
|- ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 438 |
|
fveq2 |
|- ( t = x -> ( 1st ` t ) = ( 1st ` x ) ) |
| 439 |
438
|
csbeq1d |
|- ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C ) |
| 440 |
439
|
csbeq2dv |
|- ( t = x -> [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 441 |
437 440
|
eqtrd |
|- ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 442 |
441
|
eqeq2d |
|- ( t = x -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
| 443 |
439
|
eqeq2d |
|- ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 444 |
443
|
rexbidv |
|- ( t = x -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 445 |
444
|
ralbidv |
|- ( t = x -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 446 |
442 445
|
anbi12d |
|- ( t = x -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 447 |
446
|
rexrab |
|- ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) |
| 448 |
|
xp1st |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 449 |
448
|
anim1i |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 450 |
|
eleq1 |
|- ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) ) |
| 451 |
|
csbeq1a |
|- ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C ) |
| 452 |
451
|
eqcoms |
|- ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C ) |
| 453 |
452
|
eqcomd |
|- ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C ) |
| 454 |
453
|
eqeq2d |
|- ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) ) |
| 455 |
454
|
rexbidv |
|- ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... N ) i = C ) ) |
| 456 |
455
|
ralbidv |
|- ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
| 457 |
450 456
|
anbi12d |
|- ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 458 |
449 457
|
syl5ibcom |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 459 |
458
|
adantrl |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 460 |
459
|
expimpd |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 461 |
460
|
rexlimiv |
|- ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
| 462 |
|
simplr |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 463 |
|
ovex |
|- ( 0 ... N ) e. _V |
| 464 |
463
|
enref |
|- ( 0 ... N ) ~~ ( 0 ... N ) |
| 465 |
|
phpreu |
|- ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) ) |
| 466 |
23 464 465
|
mp2an |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) |
| 467 |
466
|
biimpi |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) |
| 468 |
|
eqeq1 |
|- ( i = N -> ( i = C <-> N = C ) ) |
| 469 |
468
|
reubidv |
|- ( i = N -> ( E! j e. ( 0 ... N ) i = C <-> E! j e. ( 0 ... N ) N = C ) ) |
| 470 |
469
|
rspcva |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C ) |
| 471 |
232 467 470
|
syl2an |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C ) |
| 472 |
|
riotacl |
|- ( E! j e. ( 0 ... N ) N = C -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) |
| 473 |
471 472
|
syl |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) |
| 474 |
473
|
adantlr |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) |
| 475 |
|
opelxpi |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 476 |
462 474 475
|
syl2anc |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 477 |
|
riotasbc |
|- ( E! j e. ( 0 ... N ) N = C -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C ) |
| 478 |
471 477
|
syl |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C ) |
| 479 |
|
riotaex |
|- ( iota_ j e. ( 0 ... N ) N = C ) e. _V |
| 480 |
|
sbceq2g |
|- ( ( iota_ j e. ( 0 ... N ) N = C ) e. _V -> ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) ) |
| 481 |
479 480
|
ax-mp |
|- ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) |
| 482 |
478 481
|
sylib |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) |
| 483 |
482
|
expcom |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> ( ph -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) ) |
| 484 |
483
|
imdistanri |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
| 485 |
484
|
adantlr |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
| 486 |
|
vex |
|- s e. _V |
| 487 |
486 479
|
op2ndd |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 2nd ` x ) = ( iota_ j e. ( 0 ... N ) N = C ) ) |
| 488 |
487
|
csbeq1d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) |
| 489 |
|
nfcv |
|- F/_ j s |
| 490 |
|
nfriota1 |
|- F/_ j ( iota_ j e. ( 0 ... N ) N = C ) |
| 491 |
489 490
|
nfop |
|- F/_ j <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. |
| 492 |
491
|
nfeq2 |
|- F/ j x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. |
| 493 |
486 479
|
op1std |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 1st ` x ) = s ) |
| 494 |
493
|
eqcomd |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> s = ( 1st ` x ) ) |
| 495 |
494 451
|
syl |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> C = [_ ( 1st ` x ) / s ]_ C ) |
| 496 |
492 495
|
csbeq2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 497 |
488 496
|
eqtr3d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 498 |
497
|
eqeq2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
| 499 |
495
|
eqeq2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( i = C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 500 |
492 499
|
rexbid |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( E. j e. ( 0 ... N ) i = C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 501 |
500
|
ralbidv |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 502 |
498 501
|
anbi12d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 503 |
493
|
biantrud |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) ) |
| 504 |
502 503
|
bitr2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 505 |
504
|
rspcev |
|- ( ( <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) |
| 506 |
476 485 505
|
syl2anc |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) |
| 507 |
506
|
expl |
|- ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) ) |
| 508 |
461 507
|
impbid2 |
|- ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 509 |
447 508
|
bitrid |
|- ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
| 510 |
509
|
abbidv |
|- ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } ) |
| 511 |
|
dfimafn |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } ) |
| 512 |
428 433 511
|
mp2an |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } |
| 513 |
|
nfcv |
|- F/_ s ( 2nd ` t ) |
| 514 |
|
nfcsb1v |
|- F/_ s [_ ( 1st ` t ) / s ]_ C |
| 515 |
513 514
|
nfcsbw |
|- F/_ s [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
| 516 |
515
|
nfeq2 |
|- F/ s N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
| 517 |
|
nfcv |
|- F/_ s ( 0 ... N ) |
| 518 |
514
|
nfeq2 |
|- F/ s i = [_ ( 1st ` t ) / s ]_ C |
| 519 |
517 518
|
nfrexw |
|- F/ s E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C |
| 520 |
517 519
|
nfralw |
|- F/ s A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C |
| 521 |
516 520
|
nfan |
|- F/ s ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) |
| 522 |
|
nfcv |
|- F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) |
| 523 |
521 522
|
nfrabw |
|- F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } |
| 524 |
|
nfv |
|- F/ s ( 1st ` x ) = y |
| 525 |
523 524
|
nfrexw |
|- F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y |
| 526 |
|
nfv |
|- F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s |
| 527 |
|
eqeq2 |
|- ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) ) |
| 528 |
527
|
rexbidv |
|- ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s ) ) |
| 529 |
525 526 528
|
cbvabw |
|- { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } |
| 530 |
512 529
|
eqtri |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } |
| 531 |
|
df-rab |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } |
| 532 |
510 530 531
|
3eqtr4g |
|- ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 533 |
|
foeq3 |
|- ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 534 |
532 533
|
syl |
|- ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 535 |
435 534
|
mpbii |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 536 |
|
fof |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 537 |
535 536
|
syl |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 538 |
|
fvres |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( 1st ` x ) ) |
| 539 |
|
fvres |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) = ( 1st ` y ) ) |
| 540 |
538 539
|
eqeqan12d |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
| 541 |
540
|
adantl |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
| 542 |
446
|
elrab |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 543 |
|
xp2nd |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` x ) e. ( 0 ... N ) ) |
| 544 |
543
|
anim1i |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 545 |
542 544
|
sylbi |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 546 |
|
simpl |
|- ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 547 |
546
|
a1i |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
| 548 |
547
|
ss2rabi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } |
| 549 |
548
|
sseli |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } ) |
| 550 |
|
fveq2 |
|- ( t = y -> ( 2nd ` t ) = ( 2nd ` y ) ) |
| 551 |
550
|
csbeq1d |
|- ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
| 552 |
|
fveq2 |
|- ( t = y -> ( 1st ` t ) = ( 1st ` y ) ) |
| 553 |
552
|
csbeq1d |
|- ( t = y -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C ) |
| 554 |
553
|
csbeq2dv |
|- ( t = y -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) |
| 555 |
551 554
|
eqtrd |
|- ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) |
| 556 |
555
|
eqeq2d |
|- ( t = y -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
| 557 |
556
|
elrab |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
| 558 |
|
xp2nd |
|- ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` y ) e. ( 0 ... N ) ) |
| 559 |
558
|
anim1i |
|- ( ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
| 560 |
557 559
|
sylbi |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
| 561 |
549 560
|
syl |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
| 562 |
545 561
|
anim12i |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
| 563 |
|
an4 |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
| 564 |
563
|
anbi2i |
|- ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
| 565 |
|
anass |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 566 |
|
ancom |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 567 |
565 566
|
bitr3i |
|- ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 568 |
567
|
anbi1i |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
| 569 |
|
anass |
|- ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
| 570 |
568 569
|
bitri |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
| 571 |
|
anass |
|- ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
| 572 |
564 570 571
|
3bitr4i |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
| 573 |
562 572
|
sylib |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
| 574 |
|
phpreu |
|- ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
| 575 |
23 464 574
|
mp2an |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
| 576 |
|
reurmo |
|- ( E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
| 577 |
576
|
ralimi |
|- ( A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
| 578 |
575 577
|
sylbi |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
| 579 |
|
eqeq1 |
|- ( i = N -> ( i = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 1st ` x ) / s ]_ C ) ) |
| 580 |
579
|
rmobidv |
|- ( i = N -> ( E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) ) |
| 581 |
580
|
rspcva |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) |
| 582 |
232 578 581
|
syl2an |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) |
| 583 |
|
nfv |
|- F/ k N = [_ ( 1st ` x ) / s ]_ C |
| 584 |
583
|
rmo3 |
|- ( E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C <-> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) ) |
| 585 |
582 584
|
sylib |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) ) |
| 586 |
|
nfcsb1v |
|- F/_ j [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C |
| 587 |
586
|
nfeq2 |
|- F/ j N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C |
| 588 |
|
nfs1v |
|- F/ j [ k / j ] N = [_ ( 1st ` x ) / s ]_ C |
| 589 |
587 588
|
nfan |
|- F/ j ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) |
| 590 |
|
nfv |
|- F/ j ( 2nd ` x ) = k |
| 591 |
589 590
|
nfim |
|- F/ j ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) |
| 592 |
|
nfv |
|- F/ k ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) |
| 593 |
|
csbeq1a |
|- ( j = ( 2nd ` x ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 594 |
593
|
eqeq2d |
|- ( j = ( 2nd ` x ) -> ( N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
| 595 |
594
|
anbi1d |
|- ( j = ( 2nd ` x ) -> ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 596 |
|
eqeq1 |
|- ( j = ( 2nd ` x ) -> ( j = k <-> ( 2nd ` x ) = k ) ) |
| 597 |
595 596
|
imbi12d |
|- ( j = ( 2nd ` x ) -> ( ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) ) ) |
| 598 |
|
sbsbc |
|- ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C ) |
| 599 |
|
vex |
|- k e. _V |
| 600 |
|
sbceq2g |
|- ( k e. _V -> ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
| 601 |
599 600
|
ax-mp |
|- ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 602 |
598 601
|
bitri |
|- ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 603 |
|
csbeq1 |
|- ( k = ( 2nd ` y ) -> [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
| 604 |
603
|
eqeq2d |
|- ( k = ( 2nd ` y ) -> ( N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
| 605 |
602 604
|
bitrid |
|- ( k = ( 2nd ` y ) -> ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
| 606 |
605
|
anbi2d |
|- ( k = ( 2nd ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) |
| 607 |
|
eqeq2 |
|- ( k = ( 2nd ` y ) -> ( ( 2nd ` x ) = k <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 608 |
606 607
|
imbi12d |
|- ( k = ( 2nd ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 609 |
591 592 597 608
|
rspc2 |
|- ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 610 |
585 609
|
syl5com |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 611 |
610
|
impr |
|- ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 612 |
|
csbeq1 |
|- ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C ) |
| 613 |
612
|
csbeq2dv |
|- ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) |
| 614 |
613
|
eqeq2d |
|- ( ( 1st ` x ) = ( 1st ` y ) -> ( N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
| 615 |
614
|
anbi2d |
|- ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
| 616 |
615
|
imbi1d |
|- ( ( 1st ` x ) = ( 1st ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 617 |
611 616
|
syl5ibcom |
|- ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 618 |
617
|
com23 |
|- ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
| 619 |
618
|
impr |
|- ( ( ph /\ ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 620 |
573 619
|
sylan2 |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
| 621 |
|
elrabi |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 622 |
|
elrabi |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 623 |
|
xpopth |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) ) |
| 624 |
623
|
biimpd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) ) |
| 625 |
624
|
expd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) |
| 626 |
621 622 625
|
syl2an |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) |
| 627 |
626
|
adantl |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) |
| 628 |
620 627
|
mpdd |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
| 629 |
541 628
|
sylbid |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) |
| 630 |
629
|
ralrimivva |
|- ( ph -> A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) |
| 631 |
|
dff13 |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) ) |
| 632 |
537 630 631
|
sylanbrc |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 633 |
|
df-f1o |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 634 |
632 535 633
|
sylanbrc |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 635 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin ) |
| 636 |
138 635
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin |
| 637 |
636
|
elexi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. _V |
| 638 |
637
|
f1oen |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 639 |
634 638
|
syl |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 640 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) |
| 641 |
136 640
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin |
| 642 |
|
hashen |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 643 |
636 641 642
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
| 644 |
639 643
|
sylibr |
|- ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
| 645 |
644
|
oveq2d |
|- ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |
| 646 |
202 425 645
|
3eqtr3d |
|- ( ph -> sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |
| 647 |
135 646
|
breqtrd |
|- ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |