Metamath Proof Explorer


Theorem poimirlem26

Description: Lemma for poimir showing an even difference between the number of admissible faces and the number of admissible simplices. Equation (6) of Kulpa p. 548. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem28.1
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C )
poimirlem28.2
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) )
Assertion poimirlem26
|- ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem28.1
 |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C )
3 poimirlem28.2
 |-  ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) )
4 fzofi
 |-  ( 0 ..^ K ) e. Fin
5 fzfi
 |-  ( 1 ... N ) e. Fin
6 mapfi
 |-  ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin )
7 4 5 6 mp2an
 |-  ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin
8 mapfi
 |-  ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin )
9 5 5 8 mp2an
 |-  ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin
10 f1of
 |-  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) )
11 10 ss2abi
 |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) }
12 ovex
 |-  ( 1 ... N ) e. _V
13 12 12 mapval
 |-  ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) }
14 11 13 sseqtrri
 |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) )
15 ssfi
 |-  ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin )
16 9 14 15 mp2an
 |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin
17 7 16 pm3.2i
 |-  ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin )
18 xpfi
 |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin )
19 17 18 mp1i
 |-  ( ph -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin )
20 2z
 |-  2 e. ZZ
21 20 a1i
 |-  ( ph -> 2 e. ZZ )
22 snfi
 |-  { x } e. Fin
23 fzfi
 |-  ( 0 ... N ) e. Fin
24 rabfi
 |-  ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin )
25 23 24 ax-mp
 |-  { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin
26 xpfi
 |-  ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin )
27 22 25 26 mp2an
 |-  ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin
28 hashcl
 |-  ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 )
29 27 28 ax-mp
 |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0
30 29 nn0zi
 |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ
31 30 a1i
 |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ )
32 1 ad2antrr
 |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> N e. NN )
33 nfv
 |-  F/ j p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) )
34 nfcsb1v
 |-  F/_ j [_ k / j ]_ [_ t / s ]_ C
35 34 nfeq2
 |-  F/ j B = [_ k / j ]_ [_ t / s ]_ C
36 33 35 nfim
 |-  F/ j ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C )
37 oveq2
 |-  ( j = k -> ( 1 ... j ) = ( 1 ... k ) )
38 37 imaeq2d
 |-  ( j = k -> ( ( 2nd ` t ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... k ) ) )
39 38 xpeq1d
 |-  ( j = k -> ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) )
40 oveq1
 |-  ( j = k -> ( j + 1 ) = ( k + 1 ) )
41 40 oveq1d
 |-  ( j = k -> ( ( j + 1 ) ... N ) = ( ( k + 1 ) ... N ) )
42 41 imaeq2d
 |-  ( j = k -> ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) )
43 42 xpeq1d
 |-  ( j = k -> ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) )
44 39 43 uneq12d
 |-  ( j = k -> ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) )
45 44 oveq2d
 |-  ( j = k -> ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) )
46 45 eqeq2d
 |-  ( j = k -> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
47 csbeq1a
 |-  ( j = k -> [_ t / s ]_ C = [_ k / j ]_ [_ t / s ]_ C )
48 47 eqeq2d
 |-  ( j = k -> ( B = [_ t / s ]_ C <-> B = [_ k / j ]_ [_ t / s ]_ C ) )
49 46 48 imbi12d
 |-  ( j = k -> ( ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) ) )
50 nfv
 |-  F/ s p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
51 nfcsb1v
 |-  F/_ s [_ t / s ]_ C
52 51 nfeq2
 |-  F/ s B = [_ t / s ]_ C
53 50 52 nfim
 |-  F/ s ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C )
54 fveq2
 |-  ( s = t -> ( 1st ` s ) = ( 1st ` t ) )
55 fveq2
 |-  ( s = t -> ( 2nd ` s ) = ( 2nd ` t ) )
56 55 imaeq1d
 |-  ( s = t -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... j ) ) )
57 56 xpeq1d
 |-  ( s = t -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) )
58 55 imaeq1d
 |-  ( s = t -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) )
59 58 xpeq1d
 |-  ( s = t -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
60 57 59 uneq12d
 |-  ( s = t -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
61 54 60 oveq12d
 |-  ( s = t -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
62 61 eqeq2d
 |-  ( s = t -> ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
63 csbeq1a
 |-  ( s = t -> C = [_ t / s ]_ C )
64 63 eqeq2d
 |-  ( s = t -> ( B = C <-> B = [_ t / s ]_ C ) )
65 62 64 imbi12d
 |-  ( s = t -> ( ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) ) )
66 53 65 2 chvarfv
 |-  ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C )
67 36 49 66 chvarfv
 |-  ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C )
68 3 ad4ant14
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) )
69 xp1st
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
70 elmapi
 |-  ( ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) )
71 69 70 syl
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) )
72 71 ad2antlr
 |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) )
73 xp2nd
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
74 fvex
 |-  ( 2nd ` x ) e. _V
75 f1oeq1
 |-  ( f = ( 2nd ` x ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
76 74 75 elab
 |-  ( ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
77 73 76 sylib
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
78 77 ad2antlr
 |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
79 nfcv
 |-  F/_ j N
80 nfcv
 |-  F/_ j x
81 80 34 nfcsbw
 |-  F/_ j [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C
82 79 81 nfne
 |-  F/ j N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C
83 nfcv
 |-  F/_ t C
84 83 51 63 cbvcsbw
 |-  [_ x / s ]_ C = [_ x / t ]_ [_ t / s ]_ C
85 47 csbeq2dv
 |-  ( j = k -> [_ x / t ]_ [_ t / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C )
86 84 85 eqtrid
 |-  ( j = k -> [_ x / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C )
87 86 neeq2d
 |-  ( j = k -> ( N =/= [_ x / s ]_ C <-> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) )
88 82 87 rspc
 |-  ( k e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) )
89 88 impcom
 |-  ( ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C )
90 89 adantll
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C )
91 1st2nd2
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. )
92 91 csbeq1d
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C )
93 92 ad3antlr
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C )
94 90 93 neeqtrd
 |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C )
95 32 67 68 72 78 94 poimirlem25
 |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) )
96 nfv
 |-  F/ k i = [_ x / s ]_ C
97 81 nfeq2
 |-  F/ j i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C
98 86 eqeq2d
 |-  ( j = k -> ( i = [_ x / s ]_ C <-> i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) )
99 96 97 98 cbvrexw
 |-  ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C )
100 92 eqeq2d
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) )
101 100 rexbidv
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) )
102 99 101 bitr2id
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) )
103 102 ralbidv
 |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) )
104 iba
 |-  ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) )
105 103 104 sylan9bb
 |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) )
106 105 rabbidv
 |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } )
107 106 fveq2d
 |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
108 107 adantll
 |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
109 95 108 breqtrd
 |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
110 109 ex
 |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
111 dvds0
 |-  ( 2 e. ZZ -> 2 || 0 )
112 20 111 ax-mp
 |-  2 || 0
113 hash0
 |-  ( # ` (/) ) = 0
114 112 113 breqtrri
 |-  2 || ( # ` (/) )
115 simpr
 |-  ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C )
116 115 con3i
 |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) )
117 116 ralrimivw
 |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) )
118 rabeq0
 |-  ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) <-> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) )
119 117 118 sylibr
 |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) )
120 119 fveq2d
 |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( # ` (/) ) )
121 114 120 breqtrrid
 |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
122 110 121 pm2.61d1
 |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
123 hashxp
 |-  ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
124 22 25 123 mp2an
 |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
125 vex
 |-  x e. _V
126 hashsng
 |-  ( x e. _V -> ( # ` { x } ) = 1 )
127 125 126 ax-mp
 |-  ( # ` { x } ) = 1
128 127 oveq1i
 |-  ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
129 hashcl
 |-  ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 )
130 25 129 ax-mp
 |-  ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0
131 130 nn0cni
 |-  ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. CC
132 131 mulid2i
 |-  ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } )
133 124 128 132 3eqtri
 |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } )
134 122 133 breqtrrdi
 |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
135 19 21 31 134 fsumdvds
 |-  ( ph -> 2 || sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
136 7 16 18 mp2an
 |-  ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin
137 xpfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin )
138 136 23 137 mp2an
 |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin
139 rabfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin )
140 138 139 ax-mp
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin
141 1 nncnd
 |-  ( ph -> N e. CC )
142 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
143 141 142 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
144 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
145 1 144 syl
 |-  ( ph -> ( N - 1 ) e. NN0 )
146 145 nn0zd
 |-  ( ph -> ( N - 1 ) e. ZZ )
147 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
148 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
149 146 147 148 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
150 143 149 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
151 fzss2
 |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) )
152 ssralv
 |-  ( ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
153 150 151 152 3syl
 |-  ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
154 153 adantr
 |-  ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
155 raldifb
 |-  ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) <-> A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C )
156 nfv
 |-  F/ j ph
157 nfcsb1v
 |-  F/_ j [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C
158 157 nfeq2
 |-  F/ j N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C
159 156 158 nfan
 |-  F/ j ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
160 nfv
 |-  F/ j i e. ( 0 ... ( N - 1 ) )
161 159 160 nfan
 |-  F/ j ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) )
162 nnel
 |-  ( -. j e/ { ( 2nd ` t ) } <-> j e. { ( 2nd ` t ) } )
163 velsn
 |-  ( j e. { ( 2nd ` t ) } <-> j = ( 2nd ` t ) )
164 162 163 bitri
 |-  ( -. j e/ { ( 2nd ` t ) } <-> j = ( 2nd ` t ) )
165 csbeq1a
 |-  ( j = ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
166 165 eqeq2d
 |-  ( j = ( 2nd ` t ) -> ( N = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
167 166 biimparc
 |-  ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> N = [_ ( 1st ` t ) / s ]_ C )
168 1 nnred
 |-  ( ph -> N e. RR )
169 168 ltm1d
 |-  ( ph -> ( N - 1 ) < N )
170 145 nn0red
 |-  ( ph -> ( N - 1 ) e. RR )
171 170 168 ltnled
 |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) )
172 169 171 mpbid
 |-  ( ph -> -. N <_ ( N - 1 ) )
173 elfzle2
 |-  ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
174 172 173 nsyl
 |-  ( ph -> -. N e. ( 0 ... ( N - 1 ) ) )
175 eleq1
 |-  ( i = N -> ( i e. ( 0 ... ( N - 1 ) ) <-> N e. ( 0 ... ( N - 1 ) ) ) )
176 175 notbid
 |-  ( i = N -> ( -. i e. ( 0 ... ( N - 1 ) ) <-> -. N e. ( 0 ... ( N - 1 ) ) ) )
177 174 176 syl5ibrcom
 |-  ( ph -> ( i = N -> -. i e. ( 0 ... ( N - 1 ) ) ) )
178 177 con2d
 |-  ( ph -> ( i e. ( 0 ... ( N - 1 ) ) -> -. i = N ) )
179 178 imp
 |-  ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> -. i = N )
180 eqeq2
 |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( i = N <-> i = [_ ( 1st ` t ) / s ]_ C ) )
181 180 notbid
 |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. i = N <-> -. i = [_ ( 1st ` t ) / s ]_ C ) )
182 179 181 syl5ibcom
 |-  ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
183 167 182 syl5
 |-  ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
184 183 expdimp
 |-  ( ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
185 184 an32s
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
186 164 185 syl5bi
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
187 idd
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. i = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
188 186 187 jad
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
189 188 adantr
 |-  ( ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) )
190 161 189 ralimdaa
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) )
191 155 190 syl5bir
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) )
192 191 con3d
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C -> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) )
193 dfrex2
 |-  ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C )
194 dfrex2
 |-  ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C )
195 192 193 194 3imtr4g
 |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
196 195 ralimdva
 |-  ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
197 154 196 syld
 |-  ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
198 197 expimpd
 |-  ( ph -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
199 198 adantr
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) )
200 199 ss2rabdv
 |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } )
201 hashssdif
 |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) )
202 140 200 201 sylancr
 |-  ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) )
203 xp2nd
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) )
204 df-ne
 |-  ( N =/= [_ ( 1st ` t ) / s ]_ C <-> -. N = [_ ( 1st ` t ) / s ]_ C )
205 204 ralbii
 |-  ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C )
206 ralnex
 |-  ( A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C )
207 205 206 bitri
 |-  ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C )
208 1 nnnn0d
 |-  ( ph -> N e. NN0 )
209 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
210 208 209 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 0 ) )
211 143 210 eqeltrd
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) )
212 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
213 211 150 212 syl2anc
 |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
214 143 oveq1d
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) )
215 1 nnzd
 |-  ( ph -> N e. ZZ )
216 fzsn
 |-  ( N e. ZZ -> ( N ... N ) = { N } )
217 215 216 syl
 |-  ( ph -> ( N ... N ) = { N } )
218 214 217 eqtrd
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } )
219 218 uneq2d
 |-  ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) )
220 213 219 eqtrd
 |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) )
221 220 raleqdv
 |-  ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
222 ralunb
 |-  ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
223 difss
 |-  ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N )
224 ssrexv
 |-  ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
225 223 224 ax-mp
 |-  ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C )
226 225 ralimi
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C )
227 226 biantrurd
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
228 222 227 bitr4id
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
229 221 228 sylan9bb
 |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
230 229 adantlr
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) )
231 nn0fz0
 |-  ( N e. NN0 <-> N e. ( 0 ... N ) )
232 208 231 sylib
 |-  ( ph -> N e. ( 0 ... N ) )
233 232 ad2antrr
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> N e. ( 0 ... N ) )
234 eqeq1
 |-  ( i = N -> ( i = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 1st ` t ) / s ]_ C ) )
235 234 rexbidv
 |-  ( i = N -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) )
236 235 rspcva
 |-  ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C )
237 nfv
 |-  F/ j ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) )
238 nfcv
 |-  F/_ j ( 0 ... ( N - 1 ) )
239 nfre1
 |-  F/ j E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C
240 238 239 nfralw
 |-  F/ j A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C
241 237 240 nfan
 |-  F/ j ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C )
242 eleq1
 |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( N e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
243 242 notbid
 |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. N e. ( 0 ... ( N - 1 ) ) <-> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
244 174 243 syl5ibcom
 |-  ( ph -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
245 244 ad3antrrr
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
246 eldifsn
 |-  ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) <-> ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) )
247 diffi
 |-  ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin )
248 23 247 ax-mp
 |-  ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin
249 ssrab2
 |-  { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } )
250 ssdomg
 |-  ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) )
251 248 249 250 mp2
 |-  { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } )
252 hashdifsn
 |-  ( ( ( 0 ... N ) e. Fin /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) )
253 23 252 mpan
 |-  ( ( 2nd ` t ) e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) )
254 1cnd
 |-  ( ph -> 1 e. CC )
255 141 254 254 addsubd
 |-  ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) )
256 hashfz0
 |-  ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) )
257 208 256 syl
 |-  ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) )
258 257 oveq1d
 |-  ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) )
259 hashfz0
 |-  ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) )
260 145 259 syl
 |-  ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) )
261 255 258 260 3eqtr4d
 |-  ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( 0 ... ( N - 1 ) ) ) )
262 253 261 sylan9eqr
 |-  ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) )
263 fzfi
 |-  ( 0 ... ( N - 1 ) ) e. Fin
264 hashen
 |-  ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) )
265 248 263 264 mp2an
 |-  ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) )
266 262 265 sylib
 |-  ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) )
267 rabfi
 |-  ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin )
268 248 267 ax-mp
 |-  { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin
269 eleq1
 |-  ( i = [_ ( 1st ` t ) / s ]_ C -> ( i e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
270 269 biimpac
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) )
271 rabid
 |-  ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
272 271 simplbi2com
 |-  ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) )
273 270 272 syl
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) )
274 273 impancom
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) )
275 274 ancrd
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) )
276 275 expimpd
 |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) )
277 276 reximdv2
 |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C ) )
278 271 simplbi
 |-  ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) )
279 274 pm4.71rd
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) )
280 df-mpt
 |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) }
281 nfv
 |-  F/ k ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C )
282 nfrab1
 |-  F/_ j { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) }
283 282 nfcri
 |-  F/ j k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) }
284 nfcsb1v
 |-  F/_ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C
285 284 nfeq2
 |-  F/ j i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C
286 283 285 nfan
 |-  F/ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C )
287 eleq1
 |-  ( j = k -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) )
288 csbeq1a
 |-  ( j = k -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C )
289 288 eqeq2d
 |-  ( j = k -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
290 287 289 anbi12d
 |-  ( j = k -> ( ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) <-> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) )
291 281 286 290 cbvopab1
 |-  { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) }
292 280 291 eqtr4i
 |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) }
293 292 breqi
 |-  ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i )
294 df-br
 |-  ( j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i <-> <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } )
295 opabidw
 |-  ( <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) )
296 293 294 295 3bitri
 |-  ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) )
297 279 296 bitr4di
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
298 278 297 sylan2
 |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
299 298 rexbidva
 |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
300 nfcv
 |-  F/_ p { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) }
301 nfv
 |-  F/ p j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i
302 nfcv
 |-  F/_ j p
303 282 284 nfmpt
 |-  F/_ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C )
304 nfcv
 |-  F/_ j i
305 302 303 304 nfbr
 |-  F/ j p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i
306 breq1
 |-  ( j = p -> ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
307 282 300 301 305 306 cbvrexfw
 |-  ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i )
308 299 307 bitrdi
 |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
309 277 308 sylibd
 |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
310 309 ralimia
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i )
311 eqid
 |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C )
312 nfcv
 |-  F/_ j k
313 nfcv
 |-  F/_ j ( ( 0 ... N ) \ { ( 2nd ` t ) } )
314 284 nfel1
 |-  F/ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) )
315 288 eleq1d
 |-  ( j = k -> ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
316 312 313 314 315 elrabf
 |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( k e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
317 316 simprbi
 |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) )
318 311 317 fmpti
 |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) )
319 310 318 jctil
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
320 dffo4
 |-  ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) <-> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) )
321 319 320 sylibr
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) )
322 fodomfi
 |-  ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin /\ ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } )
323 268 321 322 sylancr
 |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } )
324 endomtr
 |-  ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) /\ ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } )
325 266 323 324 syl2an
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } )
326 sbth
 |-  ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) )
327 251 325 326 sylancr
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) )
328 fisseneq
 |-  ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) )
329 248 249 327 328 mp3an12i
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) )
330 329 eleq2d
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) )
331 330 biimpar
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } )
332 288 equcoms
 |-  ( k = j -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C )
333 332 eqcomd
 |-  ( k = j -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` t ) / s ]_ C )
334 333 eleq1d
 |-  ( k = j -> ( [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
335 334 317 vtoclga
 |-  ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) )
336 331 335 syl
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) )
337 246 336 sylan2br
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) )
338 337 expr
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( j =/= ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) )
339 338 necon1bd
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> j = ( 2nd ` t ) ) )
340 245 339 syld
 |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> j = ( 2nd ` t ) ) )
341 340 imp
 |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> j = ( 2nd ` t ) )
342 341 165 syl
 |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
343 eqtr
 |-  ( ( N = [_ ( 1st ` t ) / s ]_ C /\ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
344 343 ex
 |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
345 344 adantl
 |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
346 342 345 mpd
 |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
347 346 exp31
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( 0 ... N ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) )
348 241 158 347 rexlimd
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
349 236 348 syl5
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
350 233 349 mpand
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
351 350 pm4.71rd
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
352 235 ralsng
 |-  ( N e. NN -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) )
353 1 352 syl
 |-  ( ph -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) )
354 353 ad2antrr
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) )
355 230 351 354 3bitr3rd
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
356 355 notbid
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
357 207 356 syl5bb
 |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) )
358 357 pm5.32da
 |-  ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) )
359 203 358 sylan2
 |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) )
360 359 rabbidva
 |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } )
361 nfv
 |-  F/ y t = <. x , k >.
362 nfv
 |-  F/ y x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
363 nfrab1
 |-  F/_ y { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) }
364 363 nfcri
 |-  F/ y k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) }
365 362 364 nfan
 |-  F/ y ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } )
366 361 365 nfan
 |-  F/ y ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
367 nfv
 |-  F/ k ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) )
368 opeq2
 |-  ( k = y -> <. x , k >. = <. x , y >. )
369 368 eqeq2d
 |-  ( k = y -> ( t = <. x , k >. <-> t = <. x , y >. ) )
370 eleq1
 |-  ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
371 rabid
 |-  ( y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) )
372 370 371 bitrdi
 |-  ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) )
373 372 anbi2d
 |-  ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) )
374 3anass
 |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) )
375 373 374 bitr4di
 |-  ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) )
376 369 375 anbi12d
 |-  ( k = y -> ( ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) )
377 366 367 376 cbvexv1
 |-  ( E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) )
378 377 exbii
 |-  ( E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) )
379 eliunxp
 |-  ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
380 elopab
 |-  ( t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) )
381 378 379 380 3bitr4i
 |-  ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } )
382 381 eqriv
 |-  U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) }
383 vex
 |-  y e. _V
384 125 383 op2ndd
 |-  ( t = <. x , y >. -> ( 2nd ` t ) = y )
385 384 sneqd
 |-  ( t = <. x , y >. -> { ( 2nd ` t ) } = { y } )
386 385 difeq2d
 |-  ( t = <. x , y >. -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { y } ) )
387 125 383 op1std
 |-  ( t = <. x , y >. -> ( 1st ` t ) = x )
388 387 csbeq1d
 |-  ( t = <. x , y >. -> [_ ( 1st ` t ) / s ]_ C = [_ x / s ]_ C )
389 388 eqeq2d
 |-  ( t = <. x , y >. -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ x / s ]_ C ) )
390 386 389 rexeqbidv
 |-  ( t = <. x , y >. -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) )
391 390 ralbidv
 |-  ( t = <. x , y >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) )
392 388 neeq2d
 |-  ( t = <. x , y >. -> ( N =/= [_ ( 1st ` t ) / s ]_ C <-> N =/= [_ x / s ]_ C ) )
393 392 ralbidv
 |-  ( t = <. x , y >. -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) )
394 391 393 anbi12d
 |-  ( t = <. x , y >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) )
395 394 rabxp
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) }
396 382 395 eqtr4i
 |-  U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) }
397 difrab
 |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) }
398 360 396 397 3eqtr4g
 |-  ( ph -> U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) )
399 398 fveq2d
 |-  ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) )
400 27 a1i
 |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin )
401 inxp
 |-  ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) )
402 df-ne
 |-  ( x =/= t <-> -. x = t )
403 disjsn2
 |-  ( x =/= t -> ( { x } i^i { t } ) = (/) )
404 402 403 sylbir
 |-  ( -. x = t -> ( { x } i^i { t } ) = (/) )
405 404 xpeq1d
 |-  ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) )
406 0xp
 |-  ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/)
407 405 406 eqtrdi
 |-  ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) )
408 401 407 eqtrid
 |-  ( -. x = t -> ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) )
409 408 orri
 |-  ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) )
410 409 rgen2w
 |-  A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) )
411 sneq
 |-  ( x = t -> { x } = { t } )
412 csbeq1
 |-  ( x = t -> [_ x / s ]_ C = [_ t / s ]_ C )
413 412 eqeq2d
 |-  ( x = t -> ( i = [_ x / s ]_ C <-> i = [_ t / s ]_ C ) )
414 413 rexbidv
 |-  ( x = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) )
415 414 ralbidv
 |-  ( x = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) )
416 412 neeq2d
 |-  ( x = t -> ( N =/= [_ x / s ]_ C <-> N =/= [_ t / s ]_ C ) )
417 416 ralbidv
 |-  ( x = t -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) )
418 415 417 anbi12d
 |-  ( x = t -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) )
419 418 rabbidv
 |-  ( x = t -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } )
420 411 419 xpeq12d
 |-  ( x = t -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) )
421 420 disjor
 |-  ( Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) )
422 410 421 mpbir
 |-  Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } )
423 422 a1i
 |-  ( ph -> Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) )
424 19 400 423 hashiun
 |-  ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
425 399 424 eqtr3d
 |-  ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) )
426 fo1st
 |-  1st : _V -onto-> _V
427 fofun
 |-  ( 1st : _V -onto-> _V -> Fun 1st )
428 426 427 ax-mp
 |-  Fun 1st
429 ssv
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ _V
430 fof
 |-  ( 1st : _V -onto-> _V -> 1st : _V --> _V )
431 426 430 ax-mp
 |-  1st : _V --> _V
432 431 fdmi
 |-  dom 1st = _V
433 429 432 sseqtrri
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st
434 fores
 |-  ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) )
435 428 433 434 mp2an
 |-  ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } )
436 fveq2
 |-  ( t = x -> ( 2nd ` t ) = ( 2nd ` x ) )
437 436 csbeq1d
 |-  ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
438 fveq2
 |-  ( t = x -> ( 1st ` t ) = ( 1st ` x ) )
439 438 csbeq1d
 |-  ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C )
440 439 csbeq2dv
 |-  ( t = x -> [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C )
441 437 440 eqtrd
 |-  ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C )
442 441 eqeq2d
 |-  ( t = x -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) )
443 439 eqeq2d
 |-  ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) )
444 443 rexbidv
 |-  ( t = x -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) )
445 444 ralbidv
 |-  ( t = x -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) )
446 442 445 anbi12d
 |-  ( t = x -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) )
447 446 rexrab
 |-  ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) )
448 xp1st
 |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
449 448 anim1i
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) )
450 eleq1
 |-  ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) )
451 csbeq1a
 |-  ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C )
452 451 eqcoms
 |-  ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C )
453 452 eqcomd
 |-  ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C )
454 453 eqeq2d
 |-  ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) )
455 454 rexbidv
 |-  ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... N ) i = C ) )
456 455 ralbidv
 |-  ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) )
457 450 456 anbi12d
 |-  ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
458 449 457 syl5ibcom
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
459 458 adantrl
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
460 459 expimpd
 |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
461 460 rexlimiv
 |-  ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) )
462 simplr
 |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
463 ovex
 |-  ( 0 ... N ) e. _V
464 463 enref
 |-  ( 0 ... N ) ~~ ( 0 ... N )
465 phpreu
 |-  ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) )
466 23 464 465 mp2an
 |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C )
467 466 biimpi
 |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C )
468 eqeq1
 |-  ( i = N -> ( i = C <-> N = C ) )
469 468 reubidv
 |-  ( i = N -> ( E! j e. ( 0 ... N ) i = C <-> E! j e. ( 0 ... N ) N = C ) )
470 469 rspcva
 |-  ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C )
471 232 467 470 syl2an
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C )
472 riotacl
 |-  ( E! j e. ( 0 ... N ) N = C -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) )
473 471 472 syl
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) )
474 473 adantlr
 |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) )
475 opelxpi
 |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
476 462 474 475 syl2anc
 |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
477 riotasbc
 |-  ( E! j e. ( 0 ... N ) N = C -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C )
478 471 477 syl
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C )
479 riotaex
 |-  ( iota_ j e. ( 0 ... N ) N = C ) e. _V
480 sbceq2g
 |-  ( ( iota_ j e. ( 0 ... N ) N = C ) e. _V -> ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) )
481 479 480 ax-mp
 |-  ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C )
482 478 481 sylib
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C )
483 482 expcom
 |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> ( ph -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) )
484 483 imdistanri
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) )
485 484 adantlr
 |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) )
486 vex
 |-  s e. _V
487 486 479 op2ndd
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 2nd ` x ) = ( iota_ j e. ( 0 ... N ) N = C ) )
488 487 csbeq1d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C )
489 nfcv
 |-  F/_ j s
490 nfriota1
 |-  F/_ j ( iota_ j e. ( 0 ... N ) N = C )
491 489 490 nfop
 |-  F/_ j <. s , ( iota_ j e. ( 0 ... N ) N = C ) >.
492 491 nfeq2
 |-  F/ j x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >.
493 486 479 op1std
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 1st ` x ) = s )
494 493 eqcomd
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> s = ( 1st ` x ) )
495 494 451 syl
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> C = [_ ( 1st ` x ) / s ]_ C )
496 492 495 csbeq2d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C )
497 488 496 eqtr3d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C )
498 497 eqeq2d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) )
499 495 eqeq2d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( i = C <-> i = [_ ( 1st ` x ) / s ]_ C ) )
500 492 499 rexbid
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( E. j e. ( 0 ... N ) i = C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) )
501 500 ralbidv
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) )
502 498 501 anbi12d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) )
503 493 biantrud
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) )
504 502 503 bitr2d
 |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
505 504 rspcev
 |-  ( ( <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) )
506 476 485 505 syl2anc
 |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) )
507 506 expl
 |-  ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) )
508 461 507 impbid2
 |-  ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
509 447 508 syl5bb
 |-  ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) )
510 509 abbidv
 |-  ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } )
511 dfimafn
 |-  ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } )
512 428 433 511 mp2an
 |-  ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y }
513 nfcv
 |-  F/_ s ( 2nd ` t )
514 nfcsb1v
 |-  F/_ s [_ ( 1st ` t ) / s ]_ C
515 513 514 nfcsbw
 |-  F/_ s [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C
516 515 nfeq2
 |-  F/ s N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C
517 nfcv
 |-  F/_ s ( 0 ... N )
518 514 nfeq2
 |-  F/ s i = [_ ( 1st ` t ) / s ]_ C
519 517 518 nfrex
 |-  F/ s E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C
520 517 519 nfralw
 |-  F/ s A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C
521 516 520 nfan
 |-  F/ s ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C )
522 nfcv
 |-  F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) )
523 521 522 nfrabw
 |-  F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) }
524 nfv
 |-  F/ s ( 1st ` x ) = y
525 523 524 nfrex
 |-  F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y
526 nfv
 |-  F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s
527 eqeq2
 |-  ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) )
528 527 rexbidv
 |-  ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s ) )
529 525 526 528 cbvabw
 |-  { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s }
530 512 529 eqtri
 |-  ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s }
531 df-rab
 |-  { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) }
532 510 530 531 3eqtr4g
 |-  ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
533 foeq3
 |-  ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) )
534 532 533 syl
 |-  ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) )
535 435 534 mpbii
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
536 fof
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
537 535 536 syl
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
538 fvres
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( 1st ` x ) )
539 fvres
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) = ( 1st ` y ) )
540 538 539 eqeqan12d
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) )
541 540 adantl
 |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) )
542 446 elrab
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) )
543 xp2nd
 |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` x ) e. ( 0 ... N ) )
544 543 anim1i
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) )
545 542 544 sylbi
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) )
546 simpl
 |-  ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
547 546 a1i
 |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) )
548 547 ss2rabi
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C }
549 548 sseli
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } )
550 fveq2
 |-  ( t = y -> ( 2nd ` t ) = ( 2nd ` y ) )
551 550 csbeq1d
 |-  ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C )
552 fveq2
 |-  ( t = y -> ( 1st ` t ) = ( 1st ` y ) )
553 552 csbeq1d
 |-  ( t = y -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C )
554 553 csbeq2dv
 |-  ( t = y -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C )
555 551 554 eqtrd
 |-  ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C )
556 555 eqeq2d
 |-  ( t = y -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) )
557 556 elrab
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) )
558 xp2nd
 |-  ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` y ) e. ( 0 ... N ) )
559 558 anim1i
 |-  ( ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) )
560 557 559 sylbi
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) )
561 549 560 syl
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) )
562 545 561 anim12i
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) )
563 an4
 |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) )
564 563 anbi2i
 |-  ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) )
565 anass
 |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) )
566 ancom
 |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) )
567 565 566 bitr3i
 |-  ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) )
568 567 anbi1i
 |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) )
569 anass
 |-  ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) )
570 568 569 bitri
 |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) )
571 anass
 |-  ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) )
572 564 570 571 3bitr4i
 |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) )
573 562 572 sylib
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) )
574 phpreu
 |-  ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) )
575 23 464 574 mp2an
 |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C )
576 reurmo
 |-  ( E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C )
577 576 ralimi
 |-  ( A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C )
578 575 577 sylbi
 |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C )
579 eqeq1
 |-  ( i = N -> ( i = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 1st ` x ) / s ]_ C ) )
580 579 rmobidv
 |-  ( i = N -> ( E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) )
581 580 rspcva
 |-  ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C )
582 232 578 581 syl2an
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C )
583 nfv
 |-  F/ k N = [_ ( 1st ` x ) / s ]_ C
584 583 rmo3
 |-  ( E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C <-> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) )
585 582 584 sylib
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) )
586 nfcsb1v
 |-  F/_ j [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C
587 586 nfeq2
 |-  F/ j N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C
588 nfs1v
 |-  F/ j [ k / j ] N = [_ ( 1st ` x ) / s ]_ C
589 587 588 nfan
 |-  F/ j ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C )
590 nfv
 |-  F/ j ( 2nd ` x ) = k
591 589 590 nfim
 |-  F/ j ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k )
592 nfv
 |-  F/ k ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) )
593 csbeq1a
 |-  ( j = ( 2nd ` x ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C )
594 593 eqeq2d
 |-  ( j = ( 2nd ` x ) -> ( N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) )
595 594 anbi1d
 |-  ( j = ( 2nd ` x ) -> ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) ) )
596 eqeq1
 |-  ( j = ( 2nd ` x ) -> ( j = k <-> ( 2nd ` x ) = k ) )
597 595 596 imbi12d
 |-  ( j = ( 2nd ` x ) -> ( ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) ) )
598 sbsbc
 |-  ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C )
599 vex
 |-  k e. _V
600 sbceq2g
 |-  ( k e. _V -> ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) )
601 599 600 ax-mp
 |-  ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C )
602 598 601 bitri
 |-  ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C )
603 csbeq1
 |-  ( k = ( 2nd ` y ) -> [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C )
604 603 eqeq2d
 |-  ( k = ( 2nd ` y ) -> ( N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) )
605 602 604 syl5bb
 |-  ( k = ( 2nd ` y ) -> ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) )
606 605 anbi2d
 |-  ( k = ( 2nd ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) )
607 eqeq2
 |-  ( k = ( 2nd ` y ) -> ( ( 2nd ` x ) = k <-> ( 2nd ` x ) = ( 2nd ` y ) ) )
608 606 607 imbi12d
 |-  ( k = ( 2nd ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) )
609 591 592 597 608 rspc2
 |-  ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) )
610 585 609 syl5com
 |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) )
611 610 impr
 |-  ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) )
612 csbeq1
 |-  ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C )
613 612 csbeq2dv
 |-  ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C )
614 613 eqeq2d
 |-  ( ( 1st ` x ) = ( 1st ` y ) -> ( N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) )
615 614 anbi2d
 |-  ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) )
616 615 imbi1d
 |-  ( ( 1st ` x ) = ( 1st ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) )
617 611 616 syl5ibcom
 |-  ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) )
618 617 com23
 |-  ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) )
619 618 impr
 |-  ( ( ph /\ ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) )
620 573 619 sylan2
 |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) )
621 elrabi
 |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
622 elrabi
 |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
623 xpopth
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) )
624 623 biimpd
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) )
625 624 expd
 |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) )
626 621 622 625 syl2an
 |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) )
627 626 adantl
 |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) )
628 620 627 mpdd
 |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) )
629 541 628 sylbid
 |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) )
630 629 ralrimivva
 |-  ( ph -> A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) )
631 dff13
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) )
632 537 630 631 sylanbrc
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
633 df-f1o
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) )
634 632 535 633 sylanbrc
 |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
635 rabfi
 |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin )
636 138 635 ax-mp
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin
637 636 elexi
 |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. _V
638 637 f1oen
 |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
639 634 638 syl
 |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
640 rabfi
 |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin )
641 136 640 ax-mp
 |-  { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin
642 hashen
 |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) )
643 636 641 642 mp2an
 |-  ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } )
644 639 643 sylibr
 |-  ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) )
645 644 oveq2d
 |-  ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) )
646 202 425 645 3eqtr3d
 |-  ( ph -> sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) )
647 135 646 breqtrd
 |-  ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) )