| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem28.1 |  |-  ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) | 
						
							| 3 |  | poimirlem28.2 |  |-  ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) | 
						
							| 4 |  | fzofi |  |-  ( 0 ..^ K ) e. Fin | 
						
							| 5 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 6 |  | mapfi |  |-  ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin ) | 
						
							| 7 | 4 5 6 | mp2an |  |-  ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin | 
						
							| 8 |  | mapfi |  |-  ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin ) | 
						
							| 9 | 5 5 8 | mp2an |  |-  ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin | 
						
							| 10 |  | f1of |  |-  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 11 | 10 | ss2abi |  |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } | 
						
							| 12 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 13 | 12 12 | mapval |  |-  ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) } | 
						
							| 14 | 11 13 | sseqtrri |  |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) | 
						
							| 15 |  | ssfi |  |-  ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) | 
						
							| 16 | 9 14 15 | mp2an |  |-  { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin | 
						
							| 17 | 7 16 | pm3.2i |  |-  ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) | 
						
							| 18 |  | xpfi |  |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) | 
						
							| 19 | 17 18 | mp1i |  |-  ( ph -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) | 
						
							| 20 |  | 2z |  |-  2 e. ZZ | 
						
							| 21 | 20 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 22 |  | snfi |  |-  { x } e. Fin | 
						
							| 23 |  | fzfi |  |-  ( 0 ... N ) e. Fin | 
						
							| 24 |  | rabfi |  |-  ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) | 
						
							| 25 | 23 24 | ax-mp |  |-  { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin | 
						
							| 26 |  | xpfi |  |-  ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin ) | 
						
							| 27 | 22 25 26 | mp2an |  |-  ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin | 
						
							| 28 |  | hashcl |  |-  ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 ) | 
						
							| 29 | 27 28 | ax-mp |  |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 | 
						
							| 30 | 29 | nn0zi |  |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ | 
						
							| 31 | 30 | a1i |  |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ ) | 
						
							| 32 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> N e. NN ) | 
						
							| 33 |  | nfv |  |-  F/ j p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 34 |  | nfcsb1v |  |-  F/_ j [_ k / j ]_ [_ t / s ]_ C | 
						
							| 35 | 34 | nfeq2 |  |-  F/ j B = [_ k / j ]_ [_ t / s ]_ C | 
						
							| 36 | 33 35 | nfim |  |-  F/ j ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 37 |  | oveq2 |  |-  ( j = k -> ( 1 ... j ) = ( 1 ... k ) ) | 
						
							| 38 | 37 | imaeq2d |  |-  ( j = k -> ( ( 2nd ` t ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... k ) ) ) | 
						
							| 39 | 38 | xpeq1d |  |-  ( j = k -> ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) ) | 
						
							| 40 |  | oveq1 |  |-  ( j = k -> ( j + 1 ) = ( k + 1 ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( j = k -> ( ( j + 1 ) ... N ) = ( ( k + 1 ) ... N ) ) | 
						
							| 42 | 41 | imaeq2d |  |-  ( j = k -> ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) ) | 
						
							| 43 | 42 | xpeq1d |  |-  ( j = k -> ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 44 | 39 43 | uneq12d |  |-  ( j = k -> ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( j = k -> ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 46 | 45 | eqeq2d |  |-  ( j = k -> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 47 |  | csbeq1a |  |-  ( j = k -> [_ t / s ]_ C = [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 48 | 47 | eqeq2d |  |-  ( j = k -> ( B = [_ t / s ]_ C <-> B = [_ k / j ]_ [_ t / s ]_ C ) ) | 
						
							| 49 | 46 48 | imbi12d |  |-  ( j = k -> ( ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) ) ) | 
						
							| 50 |  | nfv |  |-  F/ s p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 51 |  | nfcsb1v |  |-  F/_ s [_ t / s ]_ C | 
						
							| 52 | 51 | nfeq2 |  |-  F/ s B = [_ t / s ]_ C | 
						
							| 53 | 50 52 | nfim |  |-  F/ s ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) | 
						
							| 54 |  | fveq2 |  |-  ( s = t -> ( 1st ` s ) = ( 1st ` t ) ) | 
						
							| 55 |  | fveq2 |  |-  ( s = t -> ( 2nd ` s ) = ( 2nd ` t ) ) | 
						
							| 56 | 55 | imaeq1d |  |-  ( s = t -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... j ) ) ) | 
						
							| 57 | 56 | xpeq1d |  |-  ( s = t -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 58 | 55 | imaeq1d |  |-  ( s = t -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 59 | 58 | xpeq1d |  |-  ( s = t -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 60 | 57 59 | uneq12d |  |-  ( s = t -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 61 | 54 60 | oveq12d |  |-  ( s = t -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 62 | 61 | eqeq2d |  |-  ( s = t -> ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 63 |  | csbeq1a |  |-  ( s = t -> C = [_ t / s ]_ C ) | 
						
							| 64 | 63 | eqeq2d |  |-  ( s = t -> ( B = C <-> B = [_ t / s ]_ C ) ) | 
						
							| 65 | 62 64 | imbi12d |  |-  ( s = t -> ( ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) ) ) | 
						
							| 66 | 53 65 2 | chvarfv |  |-  ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) | 
						
							| 67 | 36 49 66 | chvarfv |  |-  ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 68 | 3 | ad4ant14 |  |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) | 
						
							| 69 |  | xp1st |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 70 |  | elmapi |  |-  ( ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 71 | 69 70 | syl |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 72 | 71 | ad2antlr |  |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 73 |  | xp2nd |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 74 |  | fvex |  |-  ( 2nd ` x ) e. _V | 
						
							| 75 |  | f1oeq1 |  |-  ( f = ( 2nd ` x ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 76 | 74 75 | elab |  |-  ( ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 77 | 73 76 | sylib |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 78 | 77 | ad2antlr |  |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 79 |  | nfcv |  |-  F/_ j N | 
						
							| 80 |  | nfcv |  |-  F/_ j x | 
						
							| 81 | 80 34 | nfcsbw |  |-  F/_ j [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C | 
						
							| 82 | 79 81 | nfne |  |-  F/ j N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C | 
						
							| 83 |  | nfcv |  |-  F/_ t C | 
						
							| 84 | 83 51 63 | cbvcsbw |  |-  [_ x / s ]_ C = [_ x / t ]_ [_ t / s ]_ C | 
						
							| 85 | 47 | csbeq2dv |  |-  ( j = k -> [_ x / t ]_ [_ t / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 86 | 84 85 | eqtrid |  |-  ( j = k -> [_ x / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 87 | 86 | neeq2d |  |-  ( j = k -> ( N =/= [_ x / s ]_ C <-> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) | 
						
							| 88 | 82 87 | rspc |  |-  ( k e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) | 
						
							| 89 | 88 | impcom |  |-  ( ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 90 | 89 | adantll |  |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 91 |  | 1st2nd2 |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) | 
						
							| 92 | 91 | csbeq1d |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 93 | 92 | ad3antlr |  |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 94 | 90 93 | neeqtrd |  |-  ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 95 | 32 67 68 72 78 94 | poimirlem25 |  |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) ) | 
						
							| 96 |  | nfv |  |-  F/ k i = [_ x / s ]_ C | 
						
							| 97 | 81 | nfeq2 |  |-  F/ j i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C | 
						
							| 98 | 86 | eqeq2d |  |-  ( j = k -> ( i = [_ x / s ]_ C <-> i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) | 
						
							| 99 | 96 97 98 | cbvrexw |  |-  ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) | 
						
							| 100 | 92 | eqeq2d |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) | 
						
							| 101 | 100 | rexbidv |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) | 
						
							| 102 | 99 101 | bitr2id |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) | 
						
							| 103 | 102 | ralbidv |  |-  ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) | 
						
							| 104 |  | iba |  |-  ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) | 
						
							| 105 | 103 104 | sylan9bb |  |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) | 
						
							| 106 | 105 | rabbidv |  |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) | 
						
							| 107 | 106 | fveq2d |  |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 108 | 107 | adantll |  |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 109 | 95 108 | breqtrd |  |-  ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 110 | 109 | ex |  |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 111 |  | dvds0 |  |-  ( 2 e. ZZ -> 2 || 0 ) | 
						
							| 112 | 20 111 | ax-mp |  |-  2 || 0 | 
						
							| 113 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 114 | 112 113 | breqtrri |  |-  2 || ( # ` (/) ) | 
						
							| 115 |  | simpr |  |-  ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) | 
						
							| 116 | 115 | con3i |  |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) | 
						
							| 117 | 116 | ralrimivw |  |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) | 
						
							| 118 |  | rabeq0 |  |-  ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) <-> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) | 
						
							| 119 | 117 118 | sylibr |  |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) ) | 
						
							| 120 | 119 | fveq2d |  |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( # ` (/) ) ) | 
						
							| 121 | 114 120 | breqtrrid |  |-  ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 122 | 110 121 | pm2.61d1 |  |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 123 |  | hashxp |  |-  ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 124 | 22 25 123 | mp2an |  |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 125 |  | vex |  |-  x e. _V | 
						
							| 126 |  | hashsng |  |-  ( x e. _V -> ( # ` { x } ) = 1 ) | 
						
							| 127 | 125 126 | ax-mp |  |-  ( # ` { x } ) = 1 | 
						
							| 128 | 127 | oveq1i |  |-  ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 129 |  | hashcl |  |-  ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 ) | 
						
							| 130 | 25 129 | ax-mp |  |-  ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 | 
						
							| 131 | 130 | nn0cni |  |-  ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. CC | 
						
							| 132 | 131 | mullidi |  |-  ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) | 
						
							| 133 | 124 128 132 | 3eqtri |  |-  ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) | 
						
							| 134 | 122 133 | breqtrrdi |  |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 135 | 19 21 31 134 | fsumdvds |  |-  ( ph -> 2 || sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 136 | 7 16 18 | mp2an |  |-  ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin | 
						
							| 137 |  | xpfi |  |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin ) | 
						
							| 138 | 136 23 137 | mp2an |  |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin | 
						
							| 139 |  | rabfi |  |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin ) | 
						
							| 140 | 138 139 | ax-mp |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin | 
						
							| 141 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 142 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 143 | 141 142 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 144 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 145 | 1 144 | syl |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 146 | 145 | nn0zd |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 147 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 148 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 149 | 146 147 148 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 150 | 143 149 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 151 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 152 |  | ssralv |  |-  ( ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 153 | 150 151 152 | 3syl |  |-  ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 155 |  | raldifb |  |-  ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) <-> A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 156 |  | nfv |  |-  F/ j ph | 
						
							| 157 |  | nfcsb1v |  |-  F/_ j [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C | 
						
							| 158 | 157 | nfeq2 |  |-  F/ j N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C | 
						
							| 159 | 156 158 | nfan |  |-  F/ j ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 160 |  | nfv |  |-  F/ j i e. ( 0 ... ( N - 1 ) ) | 
						
							| 161 | 159 160 | nfan |  |-  F/ j ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 162 |  | nnel |  |-  ( -. j e/ { ( 2nd ` t ) } <-> j e. { ( 2nd ` t ) } ) | 
						
							| 163 |  | velsn |  |-  ( j e. { ( 2nd ` t ) } <-> j = ( 2nd ` t ) ) | 
						
							| 164 | 162 163 | bitri |  |-  ( -. j e/ { ( 2nd ` t ) } <-> j = ( 2nd ` t ) ) | 
						
							| 165 |  | csbeq1a |  |-  ( j = ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 166 | 165 | eqeq2d |  |-  ( j = ( 2nd ` t ) -> ( N = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 167 | 166 | biimparc |  |-  ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> N = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 168 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 169 | 168 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 170 | 145 | nn0red |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 171 | 170 168 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 172 | 169 171 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 173 |  | elfzle2 |  |-  ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 174 | 172 173 | nsyl |  |-  ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 175 |  | eleq1 |  |-  ( i = N -> ( i e. ( 0 ... ( N - 1 ) ) <-> N e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 176 | 175 | notbid |  |-  ( i = N -> ( -. i e. ( 0 ... ( N - 1 ) ) <-> -. N e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 177 | 174 176 | syl5ibrcom |  |-  ( ph -> ( i = N -> -. i e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 178 | 177 | con2d |  |-  ( ph -> ( i e. ( 0 ... ( N - 1 ) ) -> -. i = N ) ) | 
						
							| 179 | 178 | imp |  |-  ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> -. i = N ) | 
						
							| 180 |  | eqeq2 |  |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( i = N <-> i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 181 | 180 | notbid |  |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. i = N <-> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 182 | 179 181 | syl5ibcom |  |-  ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 183 | 167 182 | syl5 |  |-  ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 184 | 183 | expdimp |  |-  ( ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 185 | 184 | an32s |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 186 | 164 185 | biimtrid |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 187 |  | idd |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. i = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 188 | 186 187 | jad |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 189 | 188 | adantr |  |-  ( ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 190 | 161 189 | ralimdaa |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 191 | 155 190 | biimtrrid |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 192 | 191 | con3d |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C -> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 193 |  | dfrex2 |  |-  ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 194 |  | dfrex2 |  |-  ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 195 | 192 193 194 | 3imtr4g |  |-  ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 196 | 195 | ralimdva |  |-  ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 197 | 154 196 | syld |  |-  ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 198 | 197 | expimpd |  |-  ( ph -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 199 | 198 | adantr |  |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 200 | 199 | ss2rabdv |  |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) | 
						
							| 201 |  | hashssdif |  |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) | 
						
							| 202 | 140 200 201 | sylancr |  |-  ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) | 
						
							| 203 |  | xp2nd |  |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) | 
						
							| 204 |  | df-ne |  |-  ( N =/= [_ ( 1st ` t ) / s ]_ C <-> -. N = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 205 | 204 | ralbii |  |-  ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 206 |  | ralnex |  |-  ( A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 207 | 205 206 | bitri |  |-  ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 208 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 209 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 210 | 208 209 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 211 | 143 210 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 212 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 213 | 211 150 212 | syl2anc |  |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 214 | 143 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 215 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 216 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 217 | 215 216 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 218 | 214 217 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 219 | 218 | uneq2d |  |-  ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 220 | 213 219 | eqtrd |  |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 221 | 220 | raleqdv |  |-  ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 222 |  | ralunb |  |-  ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 223 |  | difss |  |-  ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) | 
						
							| 224 |  | ssrexv |  |-  ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 225 | 223 224 | ax-mp |  |-  ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 226 | 225 | ralimi |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 227 | 226 | biantrurd |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 228 | 222 227 | bitr4id |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 229 | 221 228 | sylan9bb |  |-  ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 230 | 229 | adantlr |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 231 |  | nn0fz0 |  |-  ( N e. NN0 <-> N e. ( 0 ... N ) ) | 
						
							| 232 | 208 231 | sylib |  |-  ( ph -> N e. ( 0 ... N ) ) | 
						
							| 233 | 232 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> N e. ( 0 ... N ) ) | 
						
							| 234 |  | eqeq1 |  |-  ( i = N -> ( i = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 235 | 234 | rexbidv |  |-  ( i = N -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 236 | 235 | rspcva |  |-  ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 237 |  | nfv |  |-  F/ j ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) | 
						
							| 238 |  | nfcv |  |-  F/_ j ( 0 ... ( N - 1 ) ) | 
						
							| 239 |  | nfre1 |  |-  F/ j E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C | 
						
							| 240 | 238 239 | nfralw |  |-  F/ j A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C | 
						
							| 241 | 237 240 | nfan |  |-  F/ j ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 242 |  | eleq1 |  |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( N e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 243 | 242 | notbid |  |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. N e. ( 0 ... ( N - 1 ) ) <-> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 244 | 174 243 | syl5ibcom |  |-  ( ph -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 245 | 244 | ad3antrrr |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 246 |  | eldifsn |  |-  ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) <-> ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) | 
						
							| 247 |  | diffi |  |-  ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin ) | 
						
							| 248 | 23 247 | ax-mp |  |-  ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin | 
						
							| 249 |  | ssrab2 |  |-  { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | 
						
							| 250 |  | ssdomg |  |-  ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) ) | 
						
							| 251 | 248 249 250 | mp2 |  |-  { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | 
						
							| 252 |  | hashdifsn |  |-  ( ( ( 0 ... N ) e. Fin /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) | 
						
							| 253 | 23 252 | mpan |  |-  ( ( 2nd ` t ) e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) | 
						
							| 254 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 255 | 141 254 254 | addsubd |  |-  ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 256 |  | hashfz0 |  |-  ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) | 
						
							| 257 | 208 256 | syl |  |-  ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) | 
						
							| 258 | 257 | oveq1d |  |-  ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 259 |  | hashfz0 |  |-  ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 260 | 145 259 | syl |  |-  ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) | 
						
							| 261 | 255 258 260 | 3eqtr4d |  |-  ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 262 | 253 261 | sylan9eqr |  |-  ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 263 |  | fzfi |  |-  ( 0 ... ( N - 1 ) ) e. Fin | 
						
							| 264 |  | hashen |  |-  ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 265 | 248 263 264 | mp2an |  |-  ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) | 
						
							| 266 | 262 265 | sylib |  |-  ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) | 
						
							| 267 |  | rabfi |  |-  ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin ) | 
						
							| 268 | 248 267 | ax-mp |  |-  { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin | 
						
							| 269 |  | eleq1 |  |-  ( i = [_ ( 1st ` t ) / s ]_ C -> ( i e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 270 | 269 | biimpac |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 271 |  | rabid |  |-  ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 272 | 271 | simplbi2com |  |-  ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) | 
						
							| 273 | 270 272 | syl |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) | 
						
							| 274 | 273 | impancom |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) | 
						
							| 275 | 274 | ancrd |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 276 | 275 | expimpd |  |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 277 | 276 | reximdv2 |  |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 278 | 271 | simplbi |  |-  ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) | 
						
							| 279 | 274 | pm4.71rd |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 280 |  | df-mpt |  |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) } | 
						
							| 281 |  | nfv |  |-  F/ k ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 282 |  | nfrab1 |  |-  F/_ j { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } | 
						
							| 283 | 282 | nfcri |  |-  F/ j k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } | 
						
							| 284 |  | nfcsb1v |  |-  F/_ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C | 
						
							| 285 | 284 | nfeq2 |  |-  F/ j i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C | 
						
							| 286 | 283 285 | nfan |  |-  F/ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 287 |  | eleq1 |  |-  ( j = k -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) | 
						
							| 288 |  | csbeq1a |  |-  ( j = k -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 289 | 288 | eqeq2d |  |-  ( j = k -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 290 | 287 289 | anbi12d |  |-  ( j = k -> ( ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) <-> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 291 | 281 286 290 | cbvopab1 |  |-  { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) } | 
						
							| 292 | 280 291 | eqtr4i |  |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } | 
						
							| 293 | 292 | breqi |  |-  ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i ) | 
						
							| 294 |  | df-br |  |-  ( j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i <-> <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } ) | 
						
							| 295 |  | opabidw |  |-  ( <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 296 | 293 294 295 | 3bitri |  |-  ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 297 | 279 296 | bitr4di |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 298 | 278 297 | sylan2 |  |-  ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 299 | 298 | rexbidva |  |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 300 |  | nfcv |  |-  F/_ p { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } | 
						
							| 301 |  | nfv |  |-  F/ p j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i | 
						
							| 302 |  | nfcv |  |-  F/_ j p | 
						
							| 303 | 282 284 | nfmpt |  |-  F/_ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 304 |  | nfcv |  |-  F/_ j i | 
						
							| 305 | 302 303 304 | nfbr |  |-  F/ j p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i | 
						
							| 306 |  | breq1 |  |-  ( j = p -> ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 307 | 282 300 301 305 306 | cbvrexfw |  |-  ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) | 
						
							| 308 | 299 307 | bitrdi |  |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 309 | 277 308 | sylibd |  |-  ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 310 | 309 | ralimia |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) | 
						
							| 311 |  | eqid |  |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 312 |  | nfcv |  |-  F/_ j k | 
						
							| 313 |  | nfcv |  |-  F/_ j ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | 
						
							| 314 | 284 | nfel1 |  |-  F/ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) | 
						
							| 315 | 288 | eleq1d |  |-  ( j = k -> ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 316 | 312 313 314 315 | elrabf |  |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( k e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 317 | 316 | simprbi |  |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 318 | 311 317 | fmpti |  |-  ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) | 
						
							| 319 | 310 318 | jctil |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 320 |  | dffo4 |  |-  ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) <-> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) | 
						
							| 321 | 319 320 | sylibr |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) | 
						
							| 322 |  | fodomfi |  |-  ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin /\ ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) | 
						
							| 323 | 268 321 322 | sylancr |  |-  ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) | 
						
							| 324 |  | endomtr |  |-  ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) /\ ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) | 
						
							| 325 | 266 323 324 | syl2an |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) | 
						
							| 326 |  | sbth |  |-  ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) | 
						
							| 327 | 251 325 326 | sylancr |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) | 
						
							| 328 |  | fisseneq |  |-  ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) | 
						
							| 329 | 248 249 327 328 | mp3an12i |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) | 
						
							| 330 | 329 | eleq2d |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) ) | 
						
							| 331 | 330 | biimpar |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) | 
						
							| 332 | 288 | equcoms |  |-  ( k = j -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 333 | 332 | eqcomd |  |-  ( k = j -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 334 | 333 | eleq1d |  |-  ( k = j -> ( [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 335 | 334 317 | vtoclga |  |-  ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 336 | 331 335 | syl |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 337 | 246 336 | sylan2br |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 338 | 337 | expr |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( j =/= ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 339 | 338 | necon1bd |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> j = ( 2nd ` t ) ) ) | 
						
							| 340 | 245 339 | syld |  |-  ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> j = ( 2nd ` t ) ) ) | 
						
							| 341 | 340 | imp |  |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> j = ( 2nd ` t ) ) | 
						
							| 342 | 341 165 | syl |  |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 343 |  | eqtr |  |-  ( ( N = [_ ( 1st ` t ) / s ]_ C /\ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 344 | 343 | ex |  |-  ( N = [_ ( 1st ` t ) / s ]_ C -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 345 | 344 | adantl |  |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 346 | 342 345 | mpd |  |-  ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 347 | 346 | exp31 |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( 0 ... N ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 348 | 241 158 347 | rexlimd |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 349 | 236 348 | syl5 |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 350 | 233 349 | mpand |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 351 | 350 | pm4.71rd |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 352 | 235 | ralsng |  |-  ( N e. NN -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 353 | 1 352 | syl |  |-  ( ph -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 354 | 353 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 355 | 230 351 354 | 3bitr3rd |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 356 | 355 | notbid |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 357 | 207 356 | bitrid |  |-  ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) | 
						
							| 358 | 357 | pm5.32da |  |-  ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) ) | 
						
							| 359 | 203 358 | sylan2 |  |-  ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) ) | 
						
							| 360 | 359 | rabbidva |  |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } ) | 
						
							| 361 |  | nfv |  |-  F/ y t = <. x , k >. | 
						
							| 362 |  | nfv |  |-  F/ y x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 363 |  | nfrab1 |  |-  F/_ y { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } | 
						
							| 364 | 363 | nfcri |  |-  F/ y k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } | 
						
							| 365 | 362 364 | nfan |  |-  F/ y ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) | 
						
							| 366 | 361 365 | nfan |  |-  F/ y ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 367 |  | nfv |  |-  F/ k ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) | 
						
							| 368 |  | opeq2 |  |-  ( k = y -> <. x , k >. = <. x , y >. ) | 
						
							| 369 | 368 | eqeq2d |  |-  ( k = y -> ( t = <. x , k >. <-> t = <. x , y >. ) ) | 
						
							| 370 |  | eleq1 |  |-  ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 371 |  | rabid |  |-  ( y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) | 
						
							| 372 | 370 371 | bitrdi |  |-  ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) | 
						
							| 373 | 372 | anbi2d |  |-  ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) ) | 
						
							| 374 |  | 3anass |  |-  ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) | 
						
							| 375 | 373 374 | bitr4di |  |-  ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) | 
						
							| 376 | 369 375 | anbi12d |  |-  ( k = y -> ( ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) ) | 
						
							| 377 | 366 367 376 | cbvexv1 |  |-  ( E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) | 
						
							| 378 | 377 | exbii |  |-  ( E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) | 
						
							| 379 |  | eliunxp |  |-  ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 380 |  | elopab |  |-  ( t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) | 
						
							| 381 | 378 379 380 | 3bitr4i |  |-  ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } ) | 
						
							| 382 | 381 | eqriv |  |-  U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } | 
						
							| 383 |  | vex |  |-  y e. _V | 
						
							| 384 | 125 383 | op2ndd |  |-  ( t = <. x , y >. -> ( 2nd ` t ) = y ) | 
						
							| 385 | 384 | sneqd |  |-  ( t = <. x , y >. -> { ( 2nd ` t ) } = { y } ) | 
						
							| 386 | 385 | difeq2d |  |-  ( t = <. x , y >. -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { y } ) ) | 
						
							| 387 | 125 383 | op1std |  |-  ( t = <. x , y >. -> ( 1st ` t ) = x ) | 
						
							| 388 | 387 | csbeq1d |  |-  ( t = <. x , y >. -> [_ ( 1st ` t ) / s ]_ C = [_ x / s ]_ C ) | 
						
							| 389 | 388 | eqeq2d |  |-  ( t = <. x , y >. -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ x / s ]_ C ) ) | 
						
							| 390 | 386 389 | rexeqbidv |  |-  ( t = <. x , y >. -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) | 
						
							| 391 | 390 | ralbidv |  |-  ( t = <. x , y >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) | 
						
							| 392 | 388 | neeq2d |  |-  ( t = <. x , y >. -> ( N =/= [_ ( 1st ` t ) / s ]_ C <-> N =/= [_ x / s ]_ C ) ) | 
						
							| 393 | 392 | ralbidv |  |-  ( t = <. x , y >. -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) | 
						
							| 394 | 391 393 | anbi12d |  |-  ( t = <. x , y >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) | 
						
							| 395 | 394 | rabxp |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } | 
						
							| 396 | 382 395 | eqtr4i |  |-  U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } | 
						
							| 397 |  | difrab |  |-  ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } | 
						
							| 398 | 360 396 397 | 3eqtr4g |  |-  ( ph -> U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) | 
						
							| 399 | 398 | fveq2d |  |-  ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) | 
						
							| 400 | 27 | a1i |  |-  ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin ) | 
						
							| 401 |  | inxp |  |-  ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) | 
						
							| 402 |  | df-ne |  |-  ( x =/= t <-> -. x = t ) | 
						
							| 403 |  | disjsn2 |  |-  ( x =/= t -> ( { x } i^i { t } ) = (/) ) | 
						
							| 404 | 402 403 | sylbir |  |-  ( -. x = t -> ( { x } i^i { t } ) = (/) ) | 
						
							| 405 | 404 | xpeq1d |  |-  ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) ) | 
						
							| 406 |  | 0xp |  |-  ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) | 
						
							| 407 | 405 406 | eqtrdi |  |-  ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) | 
						
							| 408 | 401 407 | eqtrid |  |-  ( -. x = t -> ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) | 
						
							| 409 | 408 | orri |  |-  ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) | 
						
							| 410 | 409 | rgen2w |  |-  A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) | 
						
							| 411 |  | sneq |  |-  ( x = t -> { x } = { t } ) | 
						
							| 412 |  | csbeq1 |  |-  ( x = t -> [_ x / s ]_ C = [_ t / s ]_ C ) | 
						
							| 413 | 412 | eqeq2d |  |-  ( x = t -> ( i = [_ x / s ]_ C <-> i = [_ t / s ]_ C ) ) | 
						
							| 414 | 413 | rexbidv |  |-  ( x = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) ) | 
						
							| 415 | 414 | ralbidv |  |-  ( x = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) ) | 
						
							| 416 | 412 | neeq2d |  |-  ( x = t -> ( N =/= [_ x / s ]_ C <-> N =/= [_ t / s ]_ C ) ) | 
						
							| 417 | 416 | ralbidv |  |-  ( x = t -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) | 
						
							| 418 | 415 417 | anbi12d |  |-  ( x = t -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) ) | 
						
							| 419 | 418 | rabbidv |  |-  ( x = t -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) | 
						
							| 420 | 411 419 | xpeq12d |  |-  ( x = t -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) | 
						
							| 421 | 420 | disjor |  |-  ( Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) ) | 
						
							| 422 | 410 421 | mpbir |  |-  Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) | 
						
							| 423 | 422 | a1i |  |-  ( ph -> Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) | 
						
							| 424 | 19 400 423 | hashiun |  |-  ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 425 | 399 424 | eqtr3d |  |-  ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) | 
						
							| 426 |  | fo1st |  |-  1st : _V -onto-> _V | 
						
							| 427 |  | fofun |  |-  ( 1st : _V -onto-> _V -> Fun 1st ) | 
						
							| 428 | 426 427 | ax-mp |  |-  Fun 1st | 
						
							| 429 |  | ssv |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ _V | 
						
							| 430 |  | fof |  |-  ( 1st : _V -onto-> _V -> 1st : _V --> _V ) | 
						
							| 431 | 426 430 | ax-mp |  |-  1st : _V --> _V | 
						
							| 432 | 431 | fdmi |  |-  dom 1st = _V | 
						
							| 433 | 429 432 | sseqtrri |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st | 
						
							| 434 |  | fores |  |-  ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) | 
						
							| 435 | 428 433 434 | mp2an |  |-  ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) | 
						
							| 436 |  | fveq2 |  |-  ( t = x -> ( 2nd ` t ) = ( 2nd ` x ) ) | 
						
							| 437 | 436 | csbeq1d |  |-  ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 438 |  | fveq2 |  |-  ( t = x -> ( 1st ` t ) = ( 1st ` x ) ) | 
						
							| 439 | 438 | csbeq1d |  |-  ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 440 | 439 | csbeq2dv |  |-  ( t = x -> [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 441 | 437 440 | eqtrd |  |-  ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 442 | 441 | eqeq2d |  |-  ( t = x -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 443 | 439 | eqeq2d |  |-  ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 444 | 443 | rexbidv |  |-  ( t = x -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 445 | 444 | ralbidv |  |-  ( t = x -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 446 | 442 445 | anbi12d |  |-  ( t = x -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 447 | 446 | rexrab |  |-  ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) | 
						
							| 448 |  | xp1st |  |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 449 | 448 | anim1i |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 450 |  | eleq1 |  |-  ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) ) | 
						
							| 451 |  | csbeq1a |  |-  ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 452 | 451 | eqcoms |  |-  ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 453 | 452 | eqcomd |  |-  ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C ) | 
						
							| 454 | 453 | eqeq2d |  |-  ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) ) | 
						
							| 455 | 454 | rexbidv |  |-  ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... N ) i = C ) ) | 
						
							| 456 | 455 | ralbidv |  |-  ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) | 
						
							| 457 | 450 456 | anbi12d |  |-  ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 458 | 449 457 | syl5ibcom |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 459 | 458 | adantrl |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 460 | 459 | expimpd |  |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 461 | 460 | rexlimiv |  |-  ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) | 
						
							| 462 |  | simplr |  |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 463 |  | ovex |  |-  ( 0 ... N ) e. _V | 
						
							| 464 | 463 | enref |  |-  ( 0 ... N ) ~~ ( 0 ... N ) | 
						
							| 465 |  | phpreu |  |-  ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) ) | 
						
							| 466 | 23 464 465 | mp2an |  |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) | 
						
							| 467 | 466 | biimpi |  |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) | 
						
							| 468 |  | eqeq1 |  |-  ( i = N -> ( i = C <-> N = C ) ) | 
						
							| 469 | 468 | reubidv |  |-  ( i = N -> ( E! j e. ( 0 ... N ) i = C <-> E! j e. ( 0 ... N ) N = C ) ) | 
						
							| 470 | 469 | rspcva |  |-  ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C ) | 
						
							| 471 | 232 467 470 | syl2an |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C ) | 
						
							| 472 |  | riotacl |  |-  ( E! j e. ( 0 ... N ) N = C -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) | 
						
							| 473 | 471 472 | syl |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) | 
						
							| 474 | 473 | adantlr |  |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) | 
						
							| 475 |  | opelxpi |  |-  ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 476 | 462 474 475 | syl2anc |  |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 477 |  | riotasbc |  |-  ( E! j e. ( 0 ... N ) N = C -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C ) | 
						
							| 478 | 471 477 | syl |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C ) | 
						
							| 479 |  | riotaex |  |-  ( iota_ j e. ( 0 ... N ) N = C ) e. _V | 
						
							| 480 |  | sbceq2g |  |-  ( ( iota_ j e. ( 0 ... N ) N = C ) e. _V -> ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) ) | 
						
							| 481 | 479 480 | ax-mp |  |-  ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) | 
						
							| 482 | 478 481 | sylib |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) | 
						
							| 483 | 482 | expcom |  |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> ( ph -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) ) | 
						
							| 484 | 483 | imdistanri |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) | 
						
							| 485 | 484 | adantlr |  |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) | 
						
							| 486 |  | vex |  |-  s e. _V | 
						
							| 487 | 486 479 | op2ndd |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 2nd ` x ) = ( iota_ j e. ( 0 ... N ) N = C ) ) | 
						
							| 488 | 487 | csbeq1d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) | 
						
							| 489 |  | nfcv |  |-  F/_ j s | 
						
							| 490 |  | nfriota1 |  |-  F/_ j ( iota_ j e. ( 0 ... N ) N = C ) | 
						
							| 491 | 489 490 | nfop |  |-  F/_ j <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. | 
						
							| 492 | 491 | nfeq2 |  |-  F/ j x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. | 
						
							| 493 | 486 479 | op1std |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 1st ` x ) = s ) | 
						
							| 494 | 493 | eqcomd |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> s = ( 1st ` x ) ) | 
						
							| 495 | 494 451 | syl |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> C = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 496 | 492 495 | csbeq2d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 497 | 488 496 | eqtr3d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 498 | 497 | eqeq2d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 499 | 495 | eqeq2d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( i = C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 500 | 492 499 | rexbid |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( E. j e. ( 0 ... N ) i = C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 501 | 500 | ralbidv |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 502 | 498 501 | anbi12d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 503 | 493 | biantrud |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) ) | 
						
							| 504 | 502 503 | bitr2d |  |-  ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 505 | 504 | rspcev |  |-  ( ( <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) | 
						
							| 506 | 476 485 505 | syl2anc |  |-  ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) | 
						
							| 507 | 506 | expl |  |-  ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) ) | 
						
							| 508 | 461 507 | impbid2 |  |-  ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 509 | 447 508 | bitrid |  |-  ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) | 
						
							| 510 | 509 | abbidv |  |-  ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } ) | 
						
							| 511 |  | dfimafn |  |-  ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } ) | 
						
							| 512 | 428 433 511 | mp2an |  |-  ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } | 
						
							| 513 |  | nfcv |  |-  F/_ s ( 2nd ` t ) | 
						
							| 514 |  | nfcsb1v |  |-  F/_ s [_ ( 1st ` t ) / s ]_ C | 
						
							| 515 | 513 514 | nfcsbw |  |-  F/_ s [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C | 
						
							| 516 | 515 | nfeq2 |  |-  F/ s N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C | 
						
							| 517 |  | nfcv |  |-  F/_ s ( 0 ... N ) | 
						
							| 518 | 514 | nfeq2 |  |-  F/ s i = [_ ( 1st ` t ) / s ]_ C | 
						
							| 519 | 517 518 | nfrexw |  |-  F/ s E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C | 
						
							| 520 | 517 519 | nfralw |  |-  F/ s A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C | 
						
							| 521 | 516 520 | nfan |  |-  F/ s ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 522 |  | nfcv |  |-  F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | 
						
							| 523 | 521 522 | nfrabw |  |-  F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } | 
						
							| 524 |  | nfv |  |-  F/ s ( 1st ` x ) = y | 
						
							| 525 | 523 524 | nfrexw |  |-  F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y | 
						
							| 526 |  | nfv |  |-  F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s | 
						
							| 527 |  | eqeq2 |  |-  ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) ) | 
						
							| 528 | 527 | rexbidv |  |-  ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s ) ) | 
						
							| 529 | 525 526 528 | cbvabw |  |-  { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } | 
						
							| 530 | 512 529 | eqtri |  |-  ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } | 
						
							| 531 |  | df-rab |  |-  { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } | 
						
							| 532 | 510 530 531 | 3eqtr4g |  |-  ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 533 |  | foeq3 |  |-  ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) | 
						
							| 534 | 532 533 | syl |  |-  ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) | 
						
							| 535 | 435 534 | mpbii |  |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 536 |  | fof |  |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 537 | 535 536 | syl |  |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 538 |  | fvres |  |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( 1st ` x ) ) | 
						
							| 539 |  | fvres |  |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) = ( 1st ` y ) ) | 
						
							| 540 | 538 539 | eqeqan12d |  |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) | 
						
							| 541 | 540 | adantl |  |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) | 
						
							| 542 | 446 | elrab |  |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 543 |  | xp2nd |  |-  ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` x ) e. ( 0 ... N ) ) | 
						
							| 544 | 543 | anim1i |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 545 | 542 544 | sylbi |  |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 546 |  | simpl |  |-  ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 547 | 546 | a1i |  |-  ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) | 
						
							| 548 | 547 | ss2rabi |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } | 
						
							| 549 | 548 | sseli |  |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } ) | 
						
							| 550 |  | fveq2 |  |-  ( t = y -> ( 2nd ` t ) = ( 2nd ` y ) ) | 
						
							| 551 | 550 | csbeq1d |  |-  ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) | 
						
							| 552 |  | fveq2 |  |-  ( t = y -> ( 1st ` t ) = ( 1st ` y ) ) | 
						
							| 553 | 552 | csbeq1d |  |-  ( t = y -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C ) | 
						
							| 554 | 553 | csbeq2dv |  |-  ( t = y -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) | 
						
							| 555 | 551 554 | eqtrd |  |-  ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) | 
						
							| 556 | 555 | eqeq2d |  |-  ( t = y -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) | 
						
							| 557 | 556 | elrab |  |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) | 
						
							| 558 |  | xp2nd |  |-  ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` y ) e. ( 0 ... N ) ) | 
						
							| 559 | 558 | anim1i |  |-  ( ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) | 
						
							| 560 | 557 559 | sylbi |  |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) | 
						
							| 561 | 549 560 | syl |  |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) | 
						
							| 562 | 545 561 | anim12i |  |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) | 
						
							| 563 |  | an4 |  |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) | 
						
							| 564 | 563 | anbi2i |  |-  ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) | 
						
							| 565 |  | anass |  |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 566 |  | ancom |  |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 567 | 565 566 | bitr3i |  |-  ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 568 | 567 | anbi1i |  |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) | 
						
							| 569 |  | anass |  |-  ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) | 
						
							| 570 | 568 569 | bitri |  |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) | 
						
							| 571 |  | anass |  |-  ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) | 
						
							| 572 | 564 570 571 | 3bitr4i |  |-  ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) | 
						
							| 573 | 562 572 | sylib |  |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) | 
						
							| 574 |  | phpreu |  |-  ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 575 | 23 464 574 | mp2an |  |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 576 |  | reurmo |  |-  ( E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 577 | 576 | ralimi |  |-  ( A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 578 | 575 577 | sylbi |  |-  ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 579 |  | eqeq1 |  |-  ( i = N -> ( i = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 580 | 579 | rmobidv |  |-  ( i = N -> ( E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 581 | 580 | rspcva |  |-  ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 582 | 232 578 581 | syl2an |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 583 |  | nfv |  |-  F/ k N = [_ ( 1st ` x ) / s ]_ C | 
						
							| 584 | 583 | rmo3 |  |-  ( E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C <-> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) ) | 
						
							| 585 | 582 584 | sylib |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) ) | 
						
							| 586 |  | nfcsb1v |  |-  F/_ j [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C | 
						
							| 587 | 586 | nfeq2 |  |-  F/ j N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C | 
						
							| 588 |  | nfs1v |  |-  F/ j [ k / j ] N = [_ ( 1st ` x ) / s ]_ C | 
						
							| 589 | 587 588 | nfan |  |-  F/ j ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 590 |  | nfv |  |-  F/ j ( 2nd ` x ) = k | 
						
							| 591 | 589 590 | nfim |  |-  F/ j ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) | 
						
							| 592 |  | nfv |  |-  F/ k ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) | 
						
							| 593 |  | csbeq1a |  |-  ( j = ( 2nd ` x ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 594 | 593 | eqeq2d |  |-  ( j = ( 2nd ` x ) -> ( N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 595 | 594 | anbi1d |  |-  ( j = ( 2nd ` x ) -> ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 596 |  | eqeq1 |  |-  ( j = ( 2nd ` x ) -> ( j = k <-> ( 2nd ` x ) = k ) ) | 
						
							| 597 | 595 596 | imbi12d |  |-  ( j = ( 2nd ` x ) -> ( ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) ) ) | 
						
							| 598 |  | sbsbc |  |-  ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 599 |  | vex |  |-  k e. _V | 
						
							| 600 |  | sbceq2g |  |-  ( k e. _V -> ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 601 | 599 600 | ax-mp |  |-  ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 602 | 598 601 | bitri |  |-  ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 603 |  | csbeq1 |  |-  ( k = ( 2nd ` y ) -> [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) | 
						
							| 604 | 603 | eqeq2d |  |-  ( k = ( 2nd ` y ) -> ( N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 605 | 602 604 | bitrid |  |-  ( k = ( 2nd ` y ) -> ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) | 
						
							| 606 | 605 | anbi2d |  |-  ( k = ( 2nd ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) | 
						
							| 607 |  | eqeq2 |  |-  ( k = ( 2nd ` y ) -> ( ( 2nd ` x ) = k <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) | 
						
							| 608 | 606 607 | imbi12d |  |-  ( k = ( 2nd ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) | 
						
							| 609 | 591 592 597 608 | rspc2 |  |-  ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) | 
						
							| 610 | 585 609 | syl5com |  |-  ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) | 
						
							| 611 | 610 | impr |  |-  ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) | 
						
							| 612 |  | csbeq1 |  |-  ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C ) | 
						
							| 613 | 612 | csbeq2dv |  |-  ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) | 
						
							| 614 | 613 | eqeq2d |  |-  ( ( 1st ` x ) = ( 1st ` y ) -> ( N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) | 
						
							| 615 | 614 | anbi2d |  |-  ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) | 
						
							| 616 | 615 | imbi1d |  |-  ( ( 1st ` x ) = ( 1st ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) | 
						
							| 617 | 611 616 | syl5ibcom |  |-  ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) | 
						
							| 618 | 617 | com23 |  |-  ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) | 
						
							| 619 | 618 | impr |  |-  ( ( ph /\ ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) | 
						
							| 620 | 573 619 | sylan2 |  |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) | 
						
							| 621 |  | elrabi |  |-  ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 622 |  | elrabi |  |-  ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 623 |  | xpopth |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) ) | 
						
							| 624 | 623 | biimpd |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) ) | 
						
							| 625 | 624 | expd |  |-  ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) | 
						
							| 626 | 621 622 625 | syl2an |  |-  ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) | 
						
							| 627 | 626 | adantl |  |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) | 
						
							| 628 | 620 627 | mpdd |  |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) | 
						
							| 629 | 541 628 | sylbid |  |-  ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) | 
						
							| 630 | 629 | ralrimivva |  |-  ( ph -> A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) | 
						
							| 631 |  | dff13 |  |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) ) | 
						
							| 632 | 537 630 631 | sylanbrc |  |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 633 |  | df-f1o |  |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) | 
						
							| 634 | 632 535 633 | sylanbrc |  |-  ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 635 |  | rabfi |  |-  ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin ) | 
						
							| 636 | 138 635 | ax-mp |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin | 
						
							| 637 | 636 | elexi |  |-  { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. _V | 
						
							| 638 | 637 | f1oen |  |-  ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 639 | 634 638 | syl |  |-  ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 640 |  | rabfi |  |-  ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) | 
						
							| 641 | 136 640 | ax-mp |  |-  { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin | 
						
							| 642 |  | hashen |  |-  ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) | 
						
							| 643 | 636 641 642 | mp2an |  |-  ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) | 
						
							| 644 | 639 643 | sylibr |  |-  ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) | 
						
							| 645 | 644 | oveq2d |  |-  ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) | 
						
							| 646 | 202 425 645 | 3eqtr3d |  |-  ( ph -> sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) | 
						
							| 647 | 135 646 | breqtrd |  |-  ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |