Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem28.1 |
|- ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) |
3 |
|
poimirlem28.2 |
|- ( ( ph /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
4 |
|
fzofi |
|- ( 0 ..^ K ) e. Fin |
5 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
6 |
|
mapfi |
|- ( ( ( 0 ..^ K ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin ) |
7 |
4 5 6
|
mp2an |
|- ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin |
8 |
|
mapfi |
|- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin ) |
9 |
5 5 8
|
mp2an |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin |
10 |
|
f1of |
|- ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> f : ( 1 ... N ) --> ( 1 ... N ) ) |
11 |
10
|
ss2abi |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
12 |
|
ovex |
|- ( 1 ... N ) e. _V |
13 |
12 12
|
mapval |
|- ( ( 1 ... N ) ^m ( 1 ... N ) ) = { f | f : ( 1 ... N ) --> ( 1 ... N ) } |
14 |
11 13
|
sseqtrri |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) |
15 |
|
ssfi |
|- ( ( ( ( 1 ... N ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } C_ ( ( 1 ... N ) ^m ( 1 ... N ) ) ) -> { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
16 |
9 14 15
|
mp2an |
|- { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin |
17 |
7 16
|
pm3.2i |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) |
18 |
|
xpfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) e. Fin /\ { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } e. Fin ) -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) |
19 |
17 18
|
mp1i |
|- ( ph -> ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin ) |
20 |
|
2z |
|- 2 e. ZZ |
21 |
20
|
a1i |
|- ( ph -> 2 e. ZZ ) |
22 |
|
snfi |
|- { x } e. Fin |
23 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
24 |
|
rabfi |
|- ( ( 0 ... N ) e. Fin -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) |
25 |
23 24
|
ax-mp |
|- { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin |
26 |
|
xpfi |
|- ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin ) |
27 |
22 25 26
|
mp2an |
|- ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin |
28 |
|
hashcl |
|- ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 ) |
29 |
27 28
|
ax-mp |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. NN0 |
30 |
29
|
nn0zi |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ |
31 |
30
|
a1i |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) e. ZZ ) |
32 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> N e. NN ) |
33 |
|
nfv |
|- F/ j p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) |
34 |
|
nfcsb1v |
|- F/_ j [_ k / j ]_ [_ t / s ]_ C |
35 |
34
|
nfeq2 |
|- F/ j B = [_ k / j ]_ [_ t / s ]_ C |
36 |
33 35
|
nfim |
|- F/ j ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) |
37 |
|
oveq2 |
|- ( j = k -> ( 1 ... j ) = ( 1 ... k ) ) |
38 |
37
|
imaeq2d |
|- ( j = k -> ( ( 2nd ` t ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... k ) ) ) |
39 |
38
|
xpeq1d |
|- ( j = k -> ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) ) |
40 |
|
oveq1 |
|- ( j = k -> ( j + 1 ) = ( k + 1 ) ) |
41 |
40
|
oveq1d |
|- ( j = k -> ( ( j + 1 ) ... N ) = ( ( k + 1 ) ... N ) ) |
42 |
41
|
imaeq2d |
|- ( j = k -> ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) ) |
43 |
42
|
xpeq1d |
|- ( j = k -> ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) |
44 |
39 43
|
uneq12d |
|- ( j = k -> ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) |
45 |
44
|
oveq2d |
|- ( j = k -> ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
46 |
45
|
eqeq2d |
|- ( j = k -> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
47 |
|
csbeq1a |
|- ( j = k -> [_ t / s ]_ C = [_ k / j ]_ [_ t / s ]_ C ) |
48 |
47
|
eqeq2d |
|- ( j = k -> ( B = [_ t / s ]_ C <-> B = [_ k / j ]_ [_ t / s ]_ C ) ) |
49 |
46 48
|
imbi12d |
|- ( j = k -> ( ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) ) ) |
50 |
|
nfv |
|- F/ s p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
51 |
|
nfcsb1v |
|- F/_ s [_ t / s ]_ C |
52 |
51
|
nfeq2 |
|- F/ s B = [_ t / s ]_ C |
53 |
50 52
|
nfim |
|- F/ s ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) |
54 |
|
fveq2 |
|- ( s = t -> ( 1st ` s ) = ( 1st ` t ) ) |
55 |
|
fveq2 |
|- ( s = t -> ( 2nd ` s ) = ( 2nd ` t ) ) |
56 |
55
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... j ) ) ) |
57 |
56
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) ) |
58 |
55
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) ) |
59 |
58
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
60 |
57 59
|
uneq12d |
|- ( s = t -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
61 |
54 60
|
oveq12d |
|- ( s = t -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
62 |
61
|
eqeq2d |
|- ( s = t -> ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
63 |
|
csbeq1a |
|- ( s = t -> C = [_ t / s ]_ C ) |
64 |
63
|
eqeq2d |
|- ( s = t -> ( B = C <-> B = [_ t / s ]_ C ) ) |
65 |
62 64
|
imbi12d |
|- ( s = t -> ( ( p = ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = C ) <-> ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) ) ) |
66 |
53 65 2
|
chvarfv |
|- ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ t / s ]_ C ) |
67 |
36 49 66
|
chvarfv |
|- ( p = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... k ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( k + 1 ) ... N ) ) X. { 0 } ) ) ) -> B = [_ k / j ]_ [_ t / s ]_ C ) |
68 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ p : ( 1 ... N ) --> ( 0 ... K ) ) -> B e. ( 0 ... N ) ) |
69 |
|
xp1st |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
70 |
|
elmapi |
|- ( ( 1st ` x ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
71 |
69 70
|
syl |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
72 |
71
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 1st ` x ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
73 |
|
xp2nd |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
74 |
|
fvex |
|- ( 2nd ` x ) e. _V |
75 |
|
f1oeq1 |
|- ( f = ( 2nd ` x ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
76 |
74 75
|
elab |
|- ( ( 2nd ` x ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
77 |
73 76
|
sylib |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
78 |
77
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( 2nd ` x ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
79 |
|
nfcv |
|- F/_ j N |
80 |
|
nfcv |
|- F/_ j x |
81 |
80 34
|
nfcsbw |
|- F/_ j [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C |
82 |
79 81
|
nfne |
|- F/ j N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C |
83 |
|
nfcv |
|- F/_ t C |
84 |
83 51 63
|
cbvcsbw |
|- [_ x / s ]_ C = [_ x / t ]_ [_ t / s ]_ C |
85 |
47
|
csbeq2dv |
|- ( j = k -> [_ x / t ]_ [_ t / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
86 |
84 85
|
syl5eq |
|- ( j = k -> [_ x / s ]_ C = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
87 |
86
|
neeq2d |
|- ( j = k -> ( N =/= [_ x / s ]_ C <-> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
88 |
82 87
|
rspc |
|- ( k e. ( 0 ... N ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
89 |
88
|
impcom |
|- ( ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
90 |
89
|
adantll |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
91 |
|
1st2nd2 |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
92 |
91
|
csbeq1d |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
93 |
92
|
ad3antlr |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
94 |
90 93
|
neeqtrd |
|- ( ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) /\ k e. ( 0 ... N ) ) -> N =/= [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
95 |
32 67 68 72 78 94
|
poimirlem25 |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) ) |
96 |
|
nfv |
|- F/ k i = [_ x / s ]_ C |
97 |
81
|
nfeq2 |
|- F/ j i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C |
98 |
86
|
eqeq2d |
|- ( j = k -> ( i = [_ x / s ]_ C <-> i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
99 |
96 97 98
|
cbvrexw |
|- ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C ) |
100 |
92
|
eqeq2d |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
101 |
100
|
rexbidv |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ x / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C ) ) |
102 |
99 101
|
bitr2id |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
103 |
102
|
ralbidv |
|- ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
104 |
|
iba |
|- ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
105 |
103 104
|
sylan9bb |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
106 |
105
|
rabbidv |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
107 |
106
|
fveq2d |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
108 |
107
|
adantll |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> ( # ` { y e. ( 0 ... N ) | A. i e. ( 0 ... ( N - 1 ) ) E. k e. ( ( 0 ... N ) \ { y } ) i = [_ <. ( 1st ` x ) , ( 2nd ` x ) >. / t ]_ [_ k / j ]_ [_ t / s ]_ C } ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
109 |
95 108
|
breqtrd |
|- ( ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
110 |
109
|
ex |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
111 |
|
dvds0 |
|- ( 2 e. ZZ -> 2 || 0 ) |
112 |
20 111
|
ax-mp |
|- 2 || 0 |
113 |
|
hash0 |
|- ( # ` (/) ) = 0 |
114 |
112 113
|
breqtrri |
|- 2 || ( # ` (/) ) |
115 |
|
simpr |
|- ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) -> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) |
116 |
115
|
con3i |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
117 |
116
|
ralrimivw |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
118 |
|
rabeq0 |
|- ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) <-> A. y e. ( 0 ... N ) -. ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
119 |
117 118
|
sylibr |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = (/) ) |
120 |
119
|
fveq2d |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( # ` (/) ) ) |
121 |
114 120
|
breqtrrid |
|- ( -. A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
122 |
110 121
|
pm2.61d1 |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
123 |
|
hashxp |
|- ( ( { x } e. Fin /\ { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin ) -> ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
124 |
22 25 123
|
mp2an |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
125 |
|
vex |
|- x e. _V |
126 |
|
hashsng |
|- ( x e. _V -> ( # ` { x } ) = 1 ) |
127 |
125 126
|
ax-mp |
|- ( # ` { x } ) = 1 |
128 |
127
|
oveq1i |
|- ( ( # ` { x } ) x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
129 |
|
hashcl |
|- ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } e. Fin -> ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 ) |
130 |
25 129
|
ax-mp |
|- ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. NN0 |
131 |
130
|
nn0cni |
|- ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. CC |
132 |
131
|
mulid2i |
|- ( 1 x. ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
133 |
124 128 132
|
3eqtri |
|- ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
134 |
122 133
|
breqtrrdi |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> 2 || ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
135 |
19 21 31 134
|
fsumdvds |
|- ( ph -> 2 || sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
136 |
7 16 18
|
mp2an |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin |
137 |
|
xpfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin /\ ( 0 ... N ) e. Fin ) -> ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin ) |
138 |
136 23 137
|
mp2an |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin |
139 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin ) |
140 |
138 139
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin |
141 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
142 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
143 |
141 142
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
144 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
145 |
1 144
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
146 |
145
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
147 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
148 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
149 |
146 147 148
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
150 |
143 149
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
151 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
152 |
|
ssralv |
|- ( ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
153 |
150 151 152
|
3syl |
|- ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
154 |
153
|
adantr |
|- ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
155 |
|
raldifb |
|- ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) <-> A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) |
156 |
|
nfv |
|- F/ j ph |
157 |
|
nfcsb1v |
|- F/_ j [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
158 |
157
|
nfeq2 |
|- F/ j N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
159 |
156 158
|
nfan |
|- F/ j ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
160 |
|
nfv |
|- F/ j i e. ( 0 ... ( N - 1 ) ) |
161 |
159 160
|
nfan |
|- F/ j ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) |
162 |
|
nnel |
|- ( -. j e/ { ( 2nd ` t ) } <-> j e. { ( 2nd ` t ) } ) |
163 |
|
velsn |
|- ( j e. { ( 2nd ` t ) } <-> j = ( 2nd ` t ) ) |
164 |
162 163
|
bitri |
|- ( -. j e/ { ( 2nd ` t ) } <-> j = ( 2nd ` t ) ) |
165 |
|
csbeq1a |
|- ( j = ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
166 |
165
|
eqeq2d |
|- ( j = ( 2nd ` t ) -> ( N = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
167 |
166
|
biimparc |
|- ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> N = [_ ( 1st ` t ) / s ]_ C ) |
168 |
1
|
nnred |
|- ( ph -> N e. RR ) |
169 |
168
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
170 |
145
|
nn0red |
|- ( ph -> ( N - 1 ) e. RR ) |
171 |
170 168
|
ltnled |
|- ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) |
172 |
169 171
|
mpbid |
|- ( ph -> -. N <_ ( N - 1 ) ) |
173 |
|
elfzle2 |
|- ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
174 |
172 173
|
nsyl |
|- ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) |
175 |
|
eleq1 |
|- ( i = N -> ( i e. ( 0 ... ( N - 1 ) ) <-> N e. ( 0 ... ( N - 1 ) ) ) ) |
176 |
175
|
notbid |
|- ( i = N -> ( -. i e. ( 0 ... ( N - 1 ) ) <-> -. N e. ( 0 ... ( N - 1 ) ) ) ) |
177 |
174 176
|
syl5ibrcom |
|- ( ph -> ( i = N -> -. i e. ( 0 ... ( N - 1 ) ) ) ) |
178 |
177
|
con2d |
|- ( ph -> ( i e. ( 0 ... ( N - 1 ) ) -> -. i = N ) ) |
179 |
178
|
imp |
|- ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> -. i = N ) |
180 |
|
eqeq2 |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( i = N <-> i = [_ ( 1st ` t ) / s ]_ C ) ) |
181 |
180
|
notbid |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. i = N <-> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
182 |
179 181
|
syl5ibcom |
|- ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
183 |
167 182
|
syl5 |
|- ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ j = ( 2nd ` t ) ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
184 |
183
|
expdimp |
|- ( ( ( ph /\ i e. ( 0 ... ( N - 1 ) ) ) /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
185 |
184
|
an32s |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( j = ( 2nd ` t ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
186 |
164 185
|
syl5bi |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
187 |
|
idd |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. i = [_ ( 1st ` t ) / s ]_ C -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
188 |
186 187
|
jad |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
189 |
188
|
adantr |
|- ( ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
190 |
161 189
|
ralimdaa |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( 0 ... N ) ( j e/ { ( 2nd ` t ) } -> -. i = [_ ( 1st ` t ) / s ]_ C ) -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
191 |
155 190
|
syl5bir |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C -> A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
192 |
191
|
con3d |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C -> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) ) |
193 |
|
dfrex2 |
|- ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( 0 ... N ) -. i = [_ ( 1st ` t ) / s ]_ C ) |
194 |
|
dfrex2 |
|- ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> -. A. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -. i = [_ ( 1st ` t ) / s ]_ C ) |
195 |
192 193 194
|
3imtr4g |
|- ( ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) /\ i e. ( 0 ... ( N - 1 ) ) ) -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
196 |
195
|
ralimdva |
|- ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
197 |
154 196
|
syld |
|- ( ( ph /\ N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
198 |
197
|
expimpd |
|- ( ph -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
199 |
198
|
adantr |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
200 |
199
|
ss2rabdv |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) |
201 |
|
hashssdif |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } e. Fin /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) |
202 |
140 200 201
|
sylancr |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) |
203 |
|
xp2nd |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` t ) e. ( 0 ... N ) ) |
204 |
|
df-ne |
|- ( N =/= [_ ( 1st ` t ) / s ]_ C <-> -. N = [_ ( 1st ` t ) / s ]_ C ) |
205 |
204
|
ralbii |
|- ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C ) |
206 |
|
ralnex |
|- ( A. j e. ( 0 ... N ) -. N = [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) |
207 |
205 206
|
bitri |
|- ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) |
208 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
209 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
210 |
208 209
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
211 |
143 210
|
eqeltrd |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) ) |
212 |
|
fzsplit2 |
|- ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
213 |
211 150 212
|
syl2anc |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
214 |
143
|
oveq1d |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) |
215 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
216 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
217 |
215 216
|
syl |
|- ( ph -> ( N ... N ) = { N } ) |
218 |
214 217
|
eqtrd |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) |
219 |
218
|
uneq2d |
|- ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
220 |
213 219
|
eqtrd |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
221 |
220
|
raleqdv |
|- ( ph -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
222 |
|
ralunb |
|- ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
223 |
|
difss |
|- ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) |
224 |
|
ssrexv |
|- ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) C_ ( 0 ... N ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
225 |
223 224
|
ax-mp |
|- ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) |
226 |
225
|
ralimi |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) |
227 |
226
|
biantrurd |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C /\ A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
228 |
222 227
|
bitr4id |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( A. i e. ( ( 0 ... ( N - 1 ) ) u. { N } ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
229 |
221 228
|
sylan9bb |
|- ( ( ph /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
230 |
229
|
adantlr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) |
231 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
232 |
208 231
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
233 |
232
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> N e. ( 0 ... N ) ) |
234 |
|
eqeq1 |
|- ( i = N -> ( i = [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 1st ` t ) / s ]_ C ) ) |
235 |
234
|
rexbidv |
|- ( i = N -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
236 |
235
|
rspcva |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) |
237 |
|
nfv |
|- F/ j ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) |
238 |
|
nfcv |
|- F/_ j ( 0 ... ( N - 1 ) ) |
239 |
|
nfre1 |
|- F/ j E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C |
240 |
238 239
|
nfralw |
|- F/ j A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C |
241 |
237 240
|
nfan |
|- F/ j ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) |
242 |
|
eleq1 |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( N e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
243 |
242
|
notbid |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( -. N e. ( 0 ... ( N - 1 ) ) <-> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
244 |
174 243
|
syl5ibcom |
|- ( ph -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
245 |
244
|
ad3antrrr |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
246 |
|
eldifsn |
|- ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) <-> ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) |
247 |
|
diffi |
|- ( ( 0 ... N ) e. Fin -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin ) |
248 |
23 247
|
ax-mp |
|- ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin |
249 |
|
ssrab2 |
|- { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) |
250 |
|
ssdomg |
|- ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) ) |
251 |
248 249 250
|
mp2 |
|- { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) |
252 |
|
hashdifsn |
|- ( ( ( 0 ... N ) e. Fin /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
253 |
23 252
|
mpan |
|- ( ( 2nd ` t ) e. ( 0 ... N ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( ( # ` ( 0 ... N ) ) - 1 ) ) |
254 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
255 |
141 254 254
|
addsubd |
|- ( ph -> ( ( N + 1 ) - 1 ) = ( ( N - 1 ) + 1 ) ) |
256 |
|
hashfz0 |
|- ( N e. NN0 -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
257 |
208 256
|
syl |
|- ( ph -> ( # ` ( 0 ... N ) ) = ( N + 1 ) ) |
258 |
257
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
259 |
|
hashfz0 |
|- ( ( N - 1 ) e. NN0 -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
260 |
145 259
|
syl |
|- ( ph -> ( # ` ( 0 ... ( N - 1 ) ) ) = ( ( N - 1 ) + 1 ) ) |
261 |
255 258 260
|
3eqtr4d |
|- ( ph -> ( ( # ` ( 0 ... N ) ) - 1 ) = ( # ` ( 0 ... ( N - 1 ) ) ) ) |
262 |
253 261
|
sylan9eqr |
|- ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) ) |
263 |
|
fzfi |
|- ( 0 ... ( N - 1 ) ) e. Fin |
264 |
|
hashen |
|- ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ ( 0 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) ) |
265 |
248 263 264
|
mp2an |
|- ( ( # ` ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) = ( # ` ( 0 ... ( N - 1 ) ) ) <-> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) |
266 |
262 265
|
sylib |
|- ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) ) |
267 |
|
rabfi |
|- ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin ) |
268 |
248 267
|
ax-mp |
|- { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin |
269 |
|
eleq1 |
|- ( i = [_ ( 1st ` t ) / s ]_ C -> ( i e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
270 |
269
|
biimpac |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
271 |
|
rabid |
|- ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
272 |
271
|
simplbi2com |
|- ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
273 |
270 272
|
syl |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
274 |
273
|
impancom |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
275 |
274
|
ancrd |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
276 |
275
|
expimpd |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( ( j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
277 |
276
|
reximdv2 |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C ) ) |
278 |
271
|
simplbi |
|- ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
279 |
274
|
pm4.71rd |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
280 |
|
df-mpt |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) } |
281 |
|
nfv |
|- F/ k ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) |
282 |
|
nfrab1 |
|- F/_ j { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |
283 |
282
|
nfcri |
|- F/ j k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |
284 |
|
nfcsb1v |
|- F/_ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C |
285 |
284
|
nfeq2 |
|- F/ j i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C |
286 |
283 285
|
nfan |
|- F/ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
287 |
|
eleq1 |
|- ( j = k -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) ) |
288 |
|
csbeq1a |
|- ( j = k -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
289 |
288
|
eqeq2d |
|- ( j = k -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
290 |
287 289
|
anbi12d |
|- ( j = k -> ( ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) <-> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) ) |
291 |
281 286 290
|
cbvopab1 |
|- { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } = { <. k , i >. | ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) } |
292 |
280 291
|
eqtr4i |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } |
293 |
292
|
breqi |
|- ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i ) |
294 |
|
df-br |
|- ( j { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } i <-> <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } ) |
295 |
|
opabidw |
|- ( <. j , i >. e. { <. j , i >. | ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) |
296 |
293 294 295
|
3bitri |
|- ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } /\ i = [_ ( 1st ` t ) / s ]_ C ) ) |
297 |
279 296
|
bitr4di |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
298 |
278 297
|
sylan2 |
|- ( ( i e. ( 0 ... ( N - 1 ) ) /\ j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( i = [_ ( 1st ` t ) / s ]_ C <-> j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
299 |
298
|
rexbidva |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
300 |
|
nfcv |
|- F/_ p { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |
301 |
|
nfv |
|- F/ p j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i |
302 |
|
nfcv |
|- F/_ j p |
303 |
282 284
|
nfmpt |
|- F/_ j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
304 |
|
nfcv |
|- F/_ j i |
305 |
302 303 304
|
nfbr |
|- F/ j p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i |
306 |
|
breq1 |
|- ( j = p -> ( j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
307 |
282 300 301 305 306
|
cbvrexfw |
|- ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } j ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) |
308 |
299 307
|
bitrdi |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } i = [_ ( 1st ` t ) / s ]_ C <-> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
309 |
277 308
|
sylibd |
|- ( i e. ( 0 ... ( N - 1 ) ) -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
310 |
309
|
ralimia |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) |
311 |
|
eqid |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) = ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
312 |
|
nfcv |
|- F/_ j k |
313 |
|
nfcv |
|- F/_ j ( ( 0 ... N ) \ { ( 2nd ` t ) } ) |
314 |
284
|
nfel1 |
|- F/ j [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) |
315 |
288
|
eleq1d |
|- ( j = k -> ( [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
316 |
312 313 314 315
|
elrabf |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> ( k e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
317 |
316
|
simprbi |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
318 |
311 317
|
fmpti |
|- ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) |
319 |
310 318
|
jctil |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
320 |
|
dffo4 |
|- ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) <-> ( ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } --> ( 0 ... ( N - 1 ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. p e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } p ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) i ) ) |
321 |
319 320
|
sylibr |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) |
322 |
|
fodomfi |
|- ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } e. Fin /\ ( k e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } |-> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) : { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -onto-> ( 0 ... ( N - 1 ) ) ) -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
323 |
268 321 322
|
sylancr |
|- ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C -> ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
324 |
|
endomtr |
|- ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~~ ( 0 ... ( N - 1 ) ) /\ ( 0 ... ( N - 1 ) ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
325 |
266 323 324
|
syl2an |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
326 |
|
sbth |
|- ( ( { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~<_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ~<_ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
327 |
251 325 326
|
sylancr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
328 |
|
fisseneq |
|- ( ( ( ( 0 ... N ) \ { ( 2nd ` t ) } ) e. Fin /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } C_ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) /\ { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ~~ ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
329 |
248 249 327 328
|
mp3an12i |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } = ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) |
330 |
329
|
eleq2d |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } <-> j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) ) |
331 |
330
|
biimpar |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } ) |
332 |
288
|
equcoms |
|- ( k = j -> [_ ( 1st ` t ) / s ]_ C = [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
333 |
332
|
eqcomd |
|- ( k = j -> [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` t ) / s ]_ C ) |
334 |
333
|
eleq1d |
|- ( k = j -> ( [_ k / j ]_ [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) <-> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
335 |
334 317
|
vtoclga |
|- ( j e. { j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) | [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) } -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
336 |
331 335
|
syl |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
337 |
246 336
|
sylan2br |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ ( j e. ( 0 ... N ) /\ j =/= ( 2nd ` t ) ) ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) |
338 |
337
|
expr |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( j =/= ( 2nd ` t ) -> [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) ) ) |
339 |
338
|
necon1bd |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( -. [_ ( 1st ` t ) / s ]_ C e. ( 0 ... ( N - 1 ) ) -> j = ( 2nd ` t ) ) ) |
340 |
245 339
|
syld |
|- ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> j = ( 2nd ` t ) ) ) |
341 |
340
|
imp |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> j = ( 2nd ` t ) ) |
342 |
341 165
|
syl |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
343 |
|
eqtr |
|- ( ( N = [_ ( 1st ` t ) / s ]_ C /\ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
344 |
343
|
ex |
|- ( N = [_ ( 1st ` t ) / s ]_ C -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
345 |
344
|
adantl |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> ( [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
346 |
342 345
|
mpd |
|- ( ( ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) /\ j e. ( 0 ... N ) ) /\ N = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
347 |
346
|
exp31 |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( j e. ( 0 ... N ) -> ( N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) ) |
348 |
241 158 347
|
rexlimd |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
349 |
236 348
|
syl5 |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
350 |
233 349
|
mpand |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
351 |
350
|
pm4.71rd |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
352 |
235
|
ralsng |
|- ( N e. NN -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
353 |
1 352
|
syl |
|- ( ph -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
354 |
353
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. i e. { N } E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C ) ) |
355 |
230 351 354
|
3bitr3rd |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
356 |
355
|
notbid |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( -. E. j e. ( 0 ... N ) N = [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
357 |
207 356
|
syl5bb |
|- ( ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) /\ A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C ) -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) |
358 |
357
|
pm5.32da |
|- ( ( ph /\ ( 2nd ` t ) e. ( 0 ... N ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) ) |
359 |
203 358
|
sylan2 |
|- ( ( ph /\ t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) ) ) |
360 |
359
|
rabbidva |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } ) |
361 |
|
nfv |
|- F/ y t = <. x , k >. |
362 |
|
nfv |
|- F/ y x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
363 |
|
nfrab1 |
|- F/_ y { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } |
364 |
363
|
nfcri |
|- F/ y k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } |
365 |
362 364
|
nfan |
|- F/ y ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
366 |
361 365
|
nfan |
|- F/ y ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
367 |
|
nfv |
|- F/ k ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
368 |
|
opeq2 |
|- ( k = y -> <. x , k >. = <. x , y >. ) |
369 |
368
|
eqeq2d |
|- ( k = y -> ( t = <. x , k >. <-> t = <. x , y >. ) ) |
370 |
|
eleq1 |
|- ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
371 |
|
rabid |
|- ( y e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
372 |
370 371
|
bitrdi |
|- ( k = y -> ( k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } <-> ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
373 |
372
|
anbi2d |
|- ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) ) |
374 |
|
3anass |
|- ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
375 |
373 374
|
bitr4di |
|- ( k = y -> ( ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
376 |
369 375
|
anbi12d |
|- ( k = y -> ( ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) ) |
377 |
366 367 376
|
cbvexv1 |
|- ( E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
378 |
377
|
exbii |
|- ( E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
379 |
|
eliunxp |
|- ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> E. x E. k ( t = <. x , k >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ k e. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
380 |
|
elopab |
|- ( t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } <-> E. x E. y ( t = <. x , y >. /\ ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) ) |
381 |
378 379 380
|
3bitr4i |
|- ( t e. U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> t e. { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } ) |
382 |
381
|
eqriv |
|- U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } |
383 |
|
vex |
|- y e. _V |
384 |
125 383
|
op2ndd |
|- ( t = <. x , y >. -> ( 2nd ` t ) = y ) |
385 |
384
|
sneqd |
|- ( t = <. x , y >. -> { ( 2nd ` t ) } = { y } ) |
386 |
385
|
difeq2d |
|- ( t = <. x , y >. -> ( ( 0 ... N ) \ { ( 2nd ` t ) } ) = ( ( 0 ... N ) \ { y } ) ) |
387 |
125 383
|
op1std |
|- ( t = <. x , y >. -> ( 1st ` t ) = x ) |
388 |
387
|
csbeq1d |
|- ( t = <. x , y >. -> [_ ( 1st ` t ) / s ]_ C = [_ x / s ]_ C ) |
389 |
388
|
eqeq2d |
|- ( t = <. x , y >. -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ x / s ]_ C ) ) |
390 |
386 389
|
rexeqbidv |
|- ( t = <. x , y >. -> ( E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
391 |
390
|
ralbidv |
|- ( t = <. x , y >. -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C ) ) |
392 |
388
|
neeq2d |
|- ( t = <. x , y >. -> ( N =/= [_ ( 1st ` t ) / s ]_ C <-> N =/= [_ x / s ]_ C ) ) |
393 |
392
|
ralbidv |
|- ( t = <. x , y >. -> ( A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) |
394 |
391 393
|
anbi12d |
|- ( t = <. x , y >. -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) ) |
395 |
394
|
rabxp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } = { <. x , y >. | ( x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ y e. ( 0 ... N ) /\ ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) ) } |
396 |
382 395
|
eqtr4i |
|- U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ ( 1st ` t ) / s ]_ C ) } |
397 |
|
difrab |
|- ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C /\ -. ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) ) } |
398 |
360 396 397
|
3eqtr4g |
|- ( ph -> U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) |
399 |
398
|
fveq2d |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) ) |
400 |
27
|
a1i |
|- ( ( ph /\ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) e. Fin ) |
401 |
|
inxp |
|- ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) |
402 |
|
df-ne |
|- ( x =/= t <-> -. x = t ) |
403 |
|
disjsn2 |
|- ( x =/= t -> ( { x } i^i { t } ) = (/) ) |
404 |
402 403
|
sylbir |
|- ( -. x = t -> ( { x } i^i { t } ) = (/) ) |
405 |
404
|
xpeq1d |
|- ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) ) |
406 |
|
0xp |
|- ( (/) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) |
407 |
405 406
|
eqtrdi |
|- ( -. x = t -> ( ( { x } i^i { t } ) X. ( { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } i^i { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
408 |
401 407
|
syl5eq |
|- ( -. x = t -> ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
409 |
408
|
orri |
|- ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
410 |
409
|
rgen2w |
|- A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) |
411 |
|
sneq |
|- ( x = t -> { x } = { t } ) |
412 |
|
csbeq1 |
|- ( x = t -> [_ x / s ]_ C = [_ t / s ]_ C ) |
413 |
412
|
eqeq2d |
|- ( x = t -> ( i = [_ x / s ]_ C <-> i = [_ t / s ]_ C ) ) |
414 |
413
|
rexbidv |
|- ( x = t -> ( E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) ) |
415 |
414
|
ralbidv |
|- ( x = t -> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C <-> A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C ) ) |
416 |
412
|
neeq2d |
|- ( x = t -> ( N =/= [_ x / s ]_ C <-> N =/= [_ t / s ]_ C ) ) |
417 |
416
|
ralbidv |
|- ( x = t -> ( A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C <-> A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) |
418 |
415 417
|
anbi12d |
|- ( x = t -> ( ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) <-> ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) ) ) |
419 |
418
|
rabbidv |
|- ( x = t -> { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } = { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) |
420 |
411 419
|
xpeq12d |
|- ( x = t -> ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) = ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) |
421 |
420
|
disjor |
|- ( Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) <-> A. x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( x = t \/ ( ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) i^i ( { t } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ t / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ t / s ]_ C ) } ) ) = (/) ) ) |
422 |
410 421
|
mpbir |
|- Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) |
423 |
422
|
a1i |
|- ( ph -> Disj_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) |
424 |
19 400 423
|
hashiun |
|- ( ph -> ( # ` U_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
425 |
399 424
|
eqtr3d |
|- ( ph -> ( # ` ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } \ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) ) |
426 |
|
fo1st |
|- 1st : _V -onto-> _V |
427 |
|
fofun |
|- ( 1st : _V -onto-> _V -> Fun 1st ) |
428 |
426 427
|
ax-mp |
|- Fun 1st |
429 |
|
ssv |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ _V |
430 |
|
fof |
|- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
431 |
426 430
|
ax-mp |
|- 1st : _V --> _V |
432 |
431
|
fdmi |
|- dom 1st = _V |
433 |
429 432
|
sseqtrri |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st |
434 |
|
fores |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) |
435 |
428 433 434
|
mp2an |
|- ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) |
436 |
|
fveq2 |
|- ( t = x -> ( 2nd ` t ) = ( 2nd ` x ) ) |
437 |
436
|
csbeq1d |
|- ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
438 |
|
fveq2 |
|- ( t = x -> ( 1st ` t ) = ( 1st ` x ) ) |
439 |
438
|
csbeq1d |
|- ( t = x -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` x ) / s ]_ C ) |
440 |
439
|
csbeq2dv |
|- ( t = x -> [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
441 |
437 440
|
eqtrd |
|- ( t = x -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
442 |
441
|
eqeq2d |
|- ( t = x -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
443 |
439
|
eqeq2d |
|- ( t = x -> ( i = [_ ( 1st ` t ) / s ]_ C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) |
444 |
443
|
rexbidv |
|- ( t = x -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
445 |
444
|
ralbidv |
|- ( t = x -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
446 |
442 445
|
anbi12d |
|- ( t = x -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
447 |
446
|
rexrab |
|- ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) |
448 |
|
xp1st |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
449 |
448
|
anim1i |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
450 |
|
eleq1 |
|- ( ( 1st ` x ) = s -> ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) <-> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) ) |
451 |
|
csbeq1a |
|- ( s = ( 1st ` x ) -> C = [_ ( 1st ` x ) / s ]_ C ) |
452 |
451
|
eqcoms |
|- ( ( 1st ` x ) = s -> C = [_ ( 1st ` x ) / s ]_ C ) |
453 |
452
|
eqcomd |
|- ( ( 1st ` x ) = s -> [_ ( 1st ` x ) / s ]_ C = C ) |
454 |
453
|
eqeq2d |
|- ( ( 1st ` x ) = s -> ( i = [_ ( 1st ` x ) / s ]_ C <-> i = C ) ) |
455 |
454
|
rexbidv |
|- ( ( 1st ` x ) = s -> ( E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E. j e. ( 0 ... N ) i = C ) ) |
456 |
455
|
ralbidv |
|- ( ( 1st ` x ) = s -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
457 |
450 456
|
anbi12d |
|- ( ( 1st ` x ) = s -> ( ( ( 1st ` x ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
458 |
449 457
|
syl5ibcom |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
459 |
458
|
adantrl |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 1st ` x ) = s -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
460 |
459
|
expimpd |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
461 |
460
|
rexlimiv |
|- ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) -> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
462 |
|
simplr |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
463 |
|
ovex |
|- ( 0 ... N ) e. _V |
464 |
463
|
enref |
|- ( 0 ... N ) ~~ ( 0 ... N ) |
465 |
|
phpreu |
|- ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) ) |
466 |
23 464 465
|
mp2an |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) |
467 |
466
|
biimpi |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) |
468 |
|
eqeq1 |
|- ( i = N -> ( i = C <-> N = C ) ) |
469 |
468
|
reubidv |
|- ( i = N -> ( E! j e. ( 0 ... N ) i = C <-> E! j e. ( 0 ... N ) N = C ) ) |
470 |
469
|
rspcva |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C ) |
471 |
232 467 470
|
syl2an |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E! j e. ( 0 ... N ) N = C ) |
472 |
|
riotacl |
|- ( E! j e. ( 0 ... N ) N = C -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) |
473 |
471 472
|
syl |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) |
474 |
473
|
adantlr |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) |
475 |
|
opelxpi |
|- ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( iota_ j e. ( 0 ... N ) N = C ) e. ( 0 ... N ) ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
476 |
462 474 475
|
syl2anc |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
477 |
|
riotasbc |
|- ( E! j e. ( 0 ... N ) N = C -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C ) |
478 |
471 477
|
syl |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C ) |
479 |
|
riotaex |
|- ( iota_ j e. ( 0 ... N ) N = C ) e. _V |
480 |
|
sbceq2g |
|- ( ( iota_ j e. ( 0 ... N ) N = C ) e. _V -> ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) ) |
481 |
479 480
|
ax-mp |
|- ( [. ( iota_ j e. ( 0 ... N ) N = C ) / j ]. N = C <-> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) |
482 |
478 481
|
sylib |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) |
483 |
482
|
expcom |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C -> ( ph -> N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) ) |
484 |
483
|
imdistanri |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
485 |
484
|
adantlr |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) |
486 |
|
vex |
|- s e. _V |
487 |
486 479
|
op2ndd |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 2nd ` x ) = ( iota_ j e. ( 0 ... N ) N = C ) ) |
488 |
487
|
csbeq1d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C ) |
489 |
|
nfcv |
|- F/_ j s |
490 |
|
nfriota1 |
|- F/_ j ( iota_ j e. ( 0 ... N ) N = C ) |
491 |
489 490
|
nfop |
|- F/_ j <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. |
492 |
491
|
nfeq2 |
|- F/ j x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. |
493 |
486 479
|
op1std |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( 1st ` x ) = s ) |
494 |
493
|
eqcomd |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> s = ( 1st ` x ) ) |
495 |
494 451
|
syl |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> C = [_ ( 1st ` x ) / s ]_ C ) |
496 |
492 495
|
csbeq2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( 2nd ` x ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
497 |
488 496
|
eqtr3d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
498 |
497
|
eqeq2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
499 |
495
|
eqeq2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( i = C <-> i = [_ ( 1st ` x ) / s ]_ C ) ) |
500 |
492 499
|
rexbid |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( E. j e. ( 0 ... N ) i = C <-> E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
501 |
500
|
ralbidv |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C <-> A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
502 |
498 501
|
anbi12d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
503 |
493
|
biantrud |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) ) |
504 |
502 503
|
bitr2d |
|- ( x = <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
505 |
504
|
rspcev |
|- ( ( <. s , ( iota_ j e. ( 0 ... N ) N = C ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( iota_ j e. ( 0 ... N ) N = C ) / j ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) |
506 |
476 485 505
|
syl2anc |
|- ( ( ( ph /\ s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) |
507 |
506
|
expl |
|- ( ph -> ( ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) -> E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) ) ) |
508 |
461 507
|
impbid2 |
|- ( ph -> ( E. x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) /\ ( 1st ` x ) = s ) <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
509 |
447 508
|
syl5bb |
|- ( ph -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s <-> ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) ) ) |
510 |
509
|
abbidv |
|- ( ph -> { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } ) |
511 |
|
dfimafn |
|- ( ( Fun 1st /\ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ dom 1st ) -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } ) |
512 |
428 433 511
|
mp2an |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } |
513 |
|
nfcv |
|- F/_ s ( 2nd ` t ) |
514 |
|
nfcsb1v |
|- F/_ s [_ ( 1st ` t ) / s ]_ C |
515 |
513 514
|
nfcsbw |
|- F/_ s [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
516 |
515
|
nfeq2 |
|- F/ s N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C |
517 |
|
nfcv |
|- F/_ s ( 0 ... N ) |
518 |
514
|
nfeq2 |
|- F/ s i = [_ ( 1st ` t ) / s ]_ C |
519 |
517 518
|
nfrex |
|- F/ s E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C |
520 |
517 519
|
nfralw |
|- F/ s A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C |
521 |
516 520
|
nfan |
|- F/ s ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) |
522 |
|
nfcv |
|- F/_ s ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) |
523 |
521 522
|
nfrabw |
|- F/_ s { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } |
524 |
|
nfv |
|- F/ s ( 1st ` x ) = y |
525 |
523 524
|
nfrex |
|- F/ s E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y |
526 |
|
nfv |
|- F/ y E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s |
527 |
|
eqeq2 |
|- ( y = s -> ( ( 1st ` x ) = y <-> ( 1st ` x ) = s ) ) |
528 |
527
|
rexbidv |
|- ( y = s -> ( E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y <-> E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s ) ) |
529 |
525 526 528
|
cbvabw |
|- { y | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = y } = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } |
530 |
512 529
|
eqtri |
|- ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s | E. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( 1st ` x ) = s } |
531 |
|
df-rab |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } = { s | ( s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C ) } |
532 |
510 530 531
|
3eqtr4g |
|- ( ph -> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
533 |
|
foeq3 |
|- ( ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
534 |
532 533
|
syl |
|- ( ph -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> ( 1st " { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) <-> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
535 |
435 534
|
mpbii |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
536 |
|
fof |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
537 |
535 536
|
syl |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
538 |
|
fvres |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( 1st ` x ) ) |
539 |
|
fvres |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) = ( 1st ` y ) ) |
540 |
538 539
|
eqeqan12d |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
541 |
540
|
adantl |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) <-> ( 1st ` x ) = ( 1st ` y ) ) ) |
542 |
446
|
elrab |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } <-> ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
543 |
|
xp2nd |
|- ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` x ) e. ( 0 ... N ) ) |
544 |
543
|
anim1i |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
545 |
542 544
|
sylbi |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
546 |
|
simpl |
|- ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
547 |
546
|
a1i |
|- ( t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) -> N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) ) |
548 |
547
|
ss2rabi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } C_ { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } |
549 |
548
|
sseli |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } ) |
550 |
|
fveq2 |
|- ( t = y -> ( 2nd ` t ) = ( 2nd ` y ) ) |
551 |
550
|
csbeq1d |
|- ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C ) |
552 |
|
fveq2 |
|- ( t = y -> ( 1st ` t ) = ( 1st ` y ) ) |
553 |
552
|
csbeq1d |
|- ( t = y -> [_ ( 1st ` t ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C ) |
554 |
553
|
csbeq2dv |
|- ( t = y -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) |
555 |
551 554
|
eqtrd |
|- ( t = y -> [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) |
556 |
555
|
eqeq2d |
|- ( t = y -> ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
557 |
556
|
elrab |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } <-> ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
558 |
|
xp2nd |
|- ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` y ) e. ( 0 ... N ) ) |
559 |
558
|
anim1i |
|- ( ( y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
560 |
557 559
|
sylbi |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
561 |
549 560
|
syl |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
562 |
545 561
|
anim12i |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
563 |
|
an4 |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
564 |
563
|
anbi2i |
|- ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
565 |
|
anass |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) ) |
566 |
|
ancom |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) |
567 |
565 566
|
bitr3i |
|- ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) |
568 |
567
|
anbi1i |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
569 |
|
anass |
|- ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
570 |
568 569
|
bitri |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
571 |
|
anass |
|- ( ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) ) |
572 |
564 570 571
|
3bitr4i |
|- ( ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) /\ ( ( 2nd ` y ) e. ( 0 ... N ) /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) <-> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
573 |
562 572
|
sylib |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
574 |
|
phpreu |
|- ( ( ( 0 ... N ) e. Fin /\ ( 0 ... N ) ~~ ( 0 ... N ) ) -> ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) ) |
575 |
23 464 574
|
mp2an |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
576 |
|
reurmo |
|- ( E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
577 |
576
|
ralimi |
|- ( A. i e. ( 0 ... N ) E! j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
578 |
575 577
|
sylbi |
|- ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C -> A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) |
579 |
|
eqeq1 |
|- ( i = N -> ( i = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 1st ` x ) / s ]_ C ) ) |
580 |
579
|
rmobidv |
|- ( i = N -> ( E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C <-> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) ) |
581 |
580
|
rspcva |
|- ( ( N e. ( 0 ... N ) /\ A. i e. ( 0 ... N ) E* j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) |
582 |
232 578 581
|
syl2an |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C ) |
583 |
|
nfv |
|- F/ k N = [_ ( 1st ` x ) / s ]_ C |
584 |
583
|
rmo3 |
|- ( E* j e. ( 0 ... N ) N = [_ ( 1st ` x ) / s ]_ C <-> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) ) |
585 |
582 584
|
sylib |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) ) |
586 |
|
nfcsb1v |
|- F/_ j [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C |
587 |
586
|
nfeq2 |
|- F/ j N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C |
588 |
|
nfs1v |
|- F/ j [ k / j ] N = [_ ( 1st ` x ) / s ]_ C |
589 |
587 588
|
nfan |
|- F/ j ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) |
590 |
|
nfv |
|- F/ j ( 2nd ` x ) = k |
591 |
589 590
|
nfim |
|- F/ j ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) |
592 |
|
nfv |
|- F/ k ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) |
593 |
|
csbeq1a |
|- ( j = ( 2nd ` x ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
594 |
593
|
eqeq2d |
|- ( j = ( 2nd ` x ) -> ( N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
595 |
594
|
anbi1d |
|- ( j = ( 2nd ` x ) -> ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) ) ) |
596 |
|
eqeq1 |
|- ( j = ( 2nd ` x ) -> ( j = k <-> ( 2nd ` x ) = k ) ) |
597 |
595 596
|
imbi12d |
|- ( j = ( 2nd ` x ) -> ( ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) ) ) |
598 |
|
sbsbc |
|- ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C ) |
599 |
|
vex |
|- k e. _V |
600 |
|
sbceq2g |
|- ( k e. _V -> ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
601 |
599 600
|
ax-mp |
|- ( [. k / j ]. N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
602 |
598 601
|
bitri |
|- ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
603 |
|
csbeq1 |
|- ( k = ( 2nd ` y ) -> [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) |
604 |
603
|
eqeq2d |
|- ( k = ( 2nd ` y ) -> ( N = [_ k / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
605 |
602 604
|
syl5bb |
|- ( k = ( 2nd ` y ) -> ( [ k / j ] N = [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) |
606 |
605
|
anbi2d |
|- ( k = ( 2nd ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) ) ) |
607 |
|
eqeq2 |
|- ( k = ( 2nd ` y ) -> ( ( 2nd ` x ) = k <-> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
608 |
606 607
|
imbi12d |
|- ( k = ( 2nd ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = k ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
609 |
591 592 597 608
|
rspc2 |
|- ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( A. j e. ( 0 ... N ) A. k e. ( 0 ... N ) ( ( N = [_ ( 1st ` x ) / s ]_ C /\ [ k / j ] N = [_ ( 1st ` x ) / s ]_ C ) -> j = k ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
610 |
585 609
|
syl5com |
|- ( ( ph /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C ) -> ( ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
611 |
610
|
impr |
|- ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
612 |
|
csbeq1 |
|- ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 1st ` x ) / s ]_ C = [_ ( 1st ` y ) / s ]_ C ) |
613 |
612
|
csbeq2dv |
|- ( ( 1st ` x ) = ( 1st ` y ) -> [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) |
614 |
613
|
eqeq2d |
|- ( ( 1st ` x ) = ( 1st ` y ) -> ( N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C <-> N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) |
615 |
614
|
anbi2d |
|- ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) <-> ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) |
616 |
615
|
imbi1d |
|- ( ( 1st ` x ) = ( 1st ` y ) -> ( ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` x ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) <-> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
617 |
611 616
|
syl5ibcom |
|- ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
618 |
617
|
com23 |
|- ( ( ph /\ ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) ) -> ( ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) ) |
619 |
618
|
impr |
|- ( ( ph /\ ( ( A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` x ) / s ]_ C /\ ( ( 2nd ` x ) e. ( 0 ... N ) /\ ( 2nd ` y ) e. ( 0 ... N ) ) ) /\ ( N = [_ ( 2nd ` x ) / j ]_ [_ ( 1st ` x ) / s ]_ C /\ N = [_ ( 2nd ` y ) / j ]_ [_ ( 1st ` y ) / s ]_ C ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
620 |
573 619
|
sylan2 |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( 2nd ` x ) = ( 2nd ` y ) ) ) |
621 |
|
elrabi |
|- ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
622 |
|
elrabi |
|- ( y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -> y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
623 |
|
xpopth |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) <-> x = y ) ) |
624 |
623
|
biimpd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) = ( 2nd ` y ) ) -> x = y ) ) |
625 |
624
|
expd |
|- ( ( x e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ y e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) |
626 |
621 622 625
|
syl2an |
|- ( ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) |
627 |
626
|
adantl |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> ( ( 2nd ` x ) = ( 2nd ` y ) -> x = y ) ) ) |
628 |
620 627
|
mpdd |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( 1st ` x ) = ( 1st ` y ) -> x = y ) ) |
629 |
541 628
|
sylbid |
|- ( ( ph /\ ( x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } /\ y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) -> ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) |
630 |
629
|
ralrimivva |
|- ( ph -> A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) |
631 |
|
dff13 |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } --> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ A. x e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } A. y e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ( ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` x ) = ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ` y ) -> x = y ) ) ) |
632 |
537 630 631
|
sylanbrc |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
633 |
|
df-f1o |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } <-> ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } /\ ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
634 |
632 535 633
|
sylanbrc |
|- ( ph -> ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
635 |
|
rabfi |
|- ( ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) e. Fin -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin ) |
636 |
138 635
|
ax-mp |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin |
637 |
636
|
elexi |
|- { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. _V |
638 |
637
|
f1oen |
|- ( ( 1st |` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) : { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
639 |
634 638
|
syl |
|- ( ph -> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
640 |
|
rabfi |
|- ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) e. Fin -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) |
641 |
136 640
|
ax-mp |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin |
642 |
|
hashen |
|- ( ( { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } e. Fin /\ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } e. Fin ) -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
643 |
636 641 642
|
mp2an |
|- ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) <-> { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) |
644 |
639 643
|
sylibr |
|- ( ph -> ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) = ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) |
645 |
644
|
oveq2d |
|- ( ph -> ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | ( N = [_ ( 2nd ` t ) / j ]_ [_ ( 1st ` t ) / s ]_ C /\ A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = [_ ( 1st ` t ) / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |
646 |
202 425 645
|
3eqtr3d |
|- ( ph -> sum_ x e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( # ` ( { x } X. { y e. ( 0 ... N ) | ( A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { y } ) i = [_ x / s ]_ C /\ A. j e. ( 0 ... N ) N =/= [_ x / s ]_ C ) } ) ) = ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |
647 |
135 646
|
breqtrd |
|- ( ph -> 2 || ( ( # ` { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | A. i e. ( 0 ... ( N - 1 ) ) E. j e. ( ( 0 ... N ) \ { ( 2nd ` t ) } ) i = [_ ( 1st ` t ) / s ]_ C } ) - ( # ` { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | A. i e. ( 0 ... N ) E. j e. ( 0 ... N ) i = C } ) ) ) |